Fetal chromosomal numerical abnormalities is a significant cause of pregnancy loss and birth defects. Ultrasound has emerged as a critical modality for fetal chromosomal anomaly screening due to its real-time capability, repeatability, and safety. However, its clinical application remains constrained by operator expertise variability and inconsistent image quality. The integration of artificial intelligence (AI) into conventional ultrasound has enabled the development of AI-based predictive models that overcome traditional screening limitations. These models demonstrate superior predictive performance compared to conventional methods while enabling simultaneous detection of rare chromosomal abnormalities. This review summarizes recent advances in synergistic applications of ultrasound and AI for fetal chromosomal aneuploidy prediction, comparatively analyzes the technical strengths and limitations of traditional versus AI-based predictive models, and discusses challenges including multicenter data standardization and model interpretability. These advancements provide novel directions for non-invasive precision prenatal screening.
To explore new ways to improve canine cloning efficiency, this study compared the effects of different concentrations and treatment times of glycolysis promoter PS48 and epigenetic modifiers (DNA methylase inhibitor RG108 and histone deacetylase inhibitor Scriptaid) on the developmental ability of canine-porcine interspecies somatic cell nuclear transfer (iSCNT) embryos. The results showed that (1) 5 μmol/L PS48 treatment on canine ear fibroblasts (cEFs) and canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) for 24 h significantly enhanced subsequent iSCNT embryo development. The cleavage rate, 4-cell stage rate and 8-cell stage rate of iSCNT embryos produced from PS48-treated cEFs were significantly higher than those of control iSCNT embryos (46.90±1.64% vs 13.30±1.61%, 32.30±1.55% vs 8.26±0.88%, and 10.62±1.68% vs 5.50±0.84%; P<0.05). The cleavage and 4-cell stage rates of iSCNT embryos generated from PS48-treated cAd-MSCs were significantly higher than those of control iSCNT embryos (49.51±3.00% vs 31.25±2.73%, 26.21±2.08% vs 15.18±1.58%; P<0.05). (2) Treatment of cEFs and cAd-MSCs with 20 μmol/L RG108 for 48 h had no significant effect on the developmental efficiency of iSCNT embryos. Treatment of cEFs and cAd-MSCs with 0 nmol/L, 400 nmol/L, 500 nmol/L and 600 nmol/L Scriptaid for 24 h had no significant effect on the developmental efficiency of iSCNT embryos. (3) Treatment of iSCNT embryos derived from two types of donor cells with 20 μmol/L RG108 significantly promoted their developmental competence (P<0.05). Treatment of iSCNT embryos derived from cEFs with 500 nmol/L Scriptaid for 16 h significantly increased their cleavage and 4-cell stage rates (23.08±2.94% vs 9.47±1.70%, 18.68±3.25% vs 6.32±1.07%; P<0.05). This study established some new methods that can significantly improve the developmental efficiency of canine-porcine iSCNT embryos, thereby contributing to the development and application of canine somatic cell cloning technology.
Historical migration activities have played a crucial role in the exchange and dissemination of populations and cultures, leading to significant cultural transformations in certain regions. Previous research has often focused on historical documents and archaeological materials, with less emphasis on integrating genetic evidence for a more comprehensive analysis. The Shengjizui cemetery, located in Bishan District, Chongqing, is characterized by its row-style stone chamber tombs and has yielded numerous burial artifacts and human remains. In this study, we conducted a comparative analysis of some of the burial artifacts unearthed from the Shengjizui cemetery with those from tombs in the same region and period, determining that the cemetery dates back to the mid to late Ming Dynasty. The results also revealed that the granary jar culture of the Shengjizui population was influenced by the Huguang region. Furthermore, the analysis of uniparental genetic markers from human bone samples indicated that the cemetery was likely a clan burial site predominantly featuring the paternal genetic lineage D1ala1a1b-Z31611, while the maternal lineage was more akin to the Han population in Southeastern China. By combining archaeological typological comparisons with historical literature, these findings suggest that the Shengjizui population was influenced by migration activities during the Ming Dynasty, providing valuable genetic evidence for the study of local and migration history in Southwest China.

