Genetic transformation technology is a core tool for generating plants with gain- or loss-of-function in modern biology and agricultural biotechnology. In recent years, developmental regulatory factors (DRs) have shown great potential in enhancing the efficiency of crop genetic transformation. In this review, we systematically examine the main crop genetic transformation methods, including Agrobacterium-mediated transformation and gene gun techniques, and discuss the current challenges in the transformation process, such as low transformation efficiency, strong genotype dependence, and insufficient regeneration capacity. We then provide a detailed discussion of several key developmental regulatory factors and their recent applications in improving transformation efficiency, overcoming genotype dependence, and enhancing regeneration capacity. Additionally, we explore the future prospects of DRs, highlighting their significant potential applications in precision gene editing, functional genomics, synthetic biology, and crop genetic improvement. Through in-depth research on DRs, the bottlenecks in crop genetic transformation are expected to be effectively overcome, thus advancing the further development of crop science and agricultural biotechnology.
Inflammatory responses have been identified as a critical factor in the development and progression of various types of tumors. These responses influence the tumor microenvironment, promoting tumor cell invasion and migration while concomitantly reducing the efficacy of tumor therapy. Inflammation is widely regarded as a significant risk factor for the development of endometrial cancer (EC). However, the precise mechanisms through which it influences the development of EC remain to be elucidated. In this study, we obtain RNA expression profiles of EC patients and related clinical information from The Cancer Genome Atlas (TCGA) database. We then screen key inflammation-related genes using survival analysis and the least absolute value shrinkage and selection operator (LASSO) algorithms. Based on this, we finally construct a prognostic risk scoring model containing nine non-zero coefficient IRGs and an alignment diagram prediction model. Survival analysis demonstrates that patients in the low-risk group exhibit a higher survival rate and more favorable prognosis. The predictive performance of both models was confirmed through the analysis of test sets and calibration curves. Subsequently, we obtain EC-related datasets from the Gene Expression Omnibus (GEO) database to serve as an external validation, thereby further substantiating the reliability of the models. Subsequent immune infiltration analysis revealed significant disparities among nine immune cell types between the high- and low-risk groups, with multiple immune cells correlating with tumor progression and prognosis. Concurrently, we perform drug sensitivity analysis, it reveals a significant correlation between one representative EC drug, tamoxifen, and one of the aforementioned IRGs. In summary, our study successfully constructs a risk score model and a column-line graph prediction model for EC. It is expected that these models will better predict the overall survival and provide new therapeutic targets for EC patients.
Hynobius yiwuensis is a vulnerable species endemic to China, restricted to specific hilly regions in Zhejiang Province. This study employed stereomicroscopy to examine the limb regeneration process in H. yiwuensis and utilized transcriptome sequencing to analyze differentially expressed genes. The results indicate that H. yiwuensis possesses strong regenerative capabilities, with the regeneration process comprising four stages: wound healing, tissue dissolution and dedifferentiation, blastema formation, and morphogenesis followed by redifferentiation. Transcriptome analysis identified numerous differentially expressed genes during limb regeneration, exhibiting distinct expression patterns at various time points post-amputation. Key differentially expressed genes were identified, including IL10, associated with cellular immunity and inflammation; TGFβ3, involved in early muscle tissue regeneration; and MMPs, implicated in tissue remodeling. qRT-PCR validation of selected differentially expressed genes confirmed the reliability of the transcriptome sequencing data. Preliminary findings suggest that H. yiwuensis regulates limb regeneration and promotes scar-free tissue repair through signaling pathways such as Wnt/β-catenin, TGFβ, and BMP.
Recurrent miscarriage is defined as three or more consecutive spontaneous abortions. Its etiology is complex, involving genetic, immune, and endocrine factors. In recent years, lipid metabolism disorders have attracted increasing attention for their potential role in recurrent miscarriage. Abnormalities in lipid metabolism can adversely affect endometrial receptivity, contributing to implantation failure. However, the precise underlying mechanisms remain to be fully elucidated. In this review, we provide an overview of the pathological mechanisms and recent advancements in research pertaining to the relationship between lipid metabolic disorders, embryonic development, and the establishment of endometrial receptivity. Special emphasis is placed on the influence of cholesterol and fatty acid metabolism on recurrent miscarriage. Furthermore, we examine the contributions of lipid metabolism to hormone synthesis and regulation, as well as the pathological changes that can arise from lipid-mediated local inflammation within the endometrium. Finally, we discuss the potential roles of lipid profile monitoring, dietary interventions, and lipid metabolism-targeted therapies in the early diagnosis and treatment of recurrent miscarriage. We hope this review can enhance understanding of the mechanisms underlying lipid metabolic dysfunction in this context and inform the development of tailored therapeutic strategies.

