首页 > 最新文献

Machine Learning and Its Application: A Quick Guide for Beginners最新文献

英文 中文
Deep Learning: A New Approach to Machine Learning 深度学习:机器学习的新方法
Pub Date : 2021-12-22 DOI: 10.2174/9781681089409121010009
Indranath Chatterjee
{"title":"Deep Learning: A New Approach to Machine Learning","authors":"Indranath Chatterjee","doi":"10.2174/9781681089409121010009","DOIUrl":"https://doi.org/10.2174/9781681089409121010009","url":null,"abstract":"","PeriodicalId":105413,"journal":{"name":"Machine Learning and Its Application: A Quick Guide for Beginners","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122543855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Supervised Machine Learning: Classification 监督机器学习:分类
Pub Date : 2021-12-22 DOI: 10.2174/9781681089409121010005
Indranath Chatterjee
{"title":"Supervised Machine Learning: Classification","authors":"Indranath Chatterjee","doi":"10.2174/9781681089409121010005","DOIUrl":"https://doi.org/10.2174/9781681089409121010005","url":null,"abstract":"","PeriodicalId":105413,"journal":{"name":"Machine Learning and Its Application: A Quick Guide for Beginners","volume":"2020 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120909502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conclusions 结论
Pub Date : 2021-12-22 DOI: 10.2174/9781681089409121010012
Indranath Chatterjee
{"title":"Conclusions","authors":"Indranath Chatterjee","doi":"10.2174/9781681089409121010012","DOIUrl":"https://doi.org/10.2174/9781681089409121010012","url":null,"abstract":"","PeriodicalId":105413,"journal":{"name":"Machine Learning and Its Application: A Quick Guide for Beginners","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122636384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to Machine Learning 机器学习概论
Pub Date : 2021-12-22 DOI: 10.2174/9781681089409121010004
Indranath Chatterjee
{"title":"Introduction to Machine Learning","authors":"Indranath Chatterjee","doi":"10.2174/9781681089409121010004","DOIUrl":"https://doi.org/10.2174/9781681089409121010004","url":null,"abstract":"","PeriodicalId":105413,"journal":{"name":"Machine Learning and Its Application: A Quick Guide for Beginners","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130630693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature Engineering 工程特性
Pub Date : 2021-12-22 DOI: 10.2174/9781681089409121010010
Indranath Chatterjee
{"title":"Feature Engineering","authors":"Indranath Chatterjee","doi":"10.2174/9781681089409121010010","DOIUrl":"https://doi.org/10.2174/9781681089409121010010","url":null,"abstract":"","PeriodicalId":105413,"journal":{"name":"Machine Learning and Its Application: A Quick Guide for Beginners","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129419520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Machine Learning and Deep Learning 机器学习和深度学习的应用
Pub Date : 2021-12-22 DOI: 10.2174/9781681089409121010011
Siddhika Arunachalam
Ultrasound (US) imaging (sonography) is the most frequently performed cross-sectional diagnostic imaging modality in the field of medicine. It is non-ionizing, portable, cost-effective, and capable of real-time image acquisition and display. US is a rapidly evolving technology with substantial opportunities and challenges. Challenges include limited image quality control and high inter- and intra-operator variability. As US devices become smaller, due to progressive miniaturization of US devices in the last decade, increased computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, leading Machine Learning (ML) and Deep Learning (DL) approaches and research directions in US, with an emphasis on recent ML and DL advances is discussed. An outlook on future opportunities for ML and DL techniques to further improve clinical workflow and US-based disease diagnosis and characterization is also presented.
超声(US)成像(sonography)是医学领域最常用的横断面诊断成像方式。它是非电离的,便携的,具有成本效益的,并且能够实时图像采集和显示。美国是一个快速发展的技术国家,有大量的机遇和挑战。挑战包括有限的图像质量控制和操作员之间和内部的高可变性。由于美国设备在过去十年中逐渐小型化,美国设备变得越来越小,通过先进的图像处理,计算能力的提高可以显著降低可变性。本文介绍了美国机器学习(ML)和深度学习(DL)的主要方法和研究方向,重点讨论了机器学习和深度学习的最新进展。展望了ML和DL技术未来的机会,以进一步改善临床工作流程和基于美国的疾病诊断和表征。
{"title":"Applications of Machine Learning and Deep Learning","authors":"Siddhika Arunachalam","doi":"10.2174/9781681089409121010011","DOIUrl":"https://doi.org/10.2174/9781681089409121010011","url":null,"abstract":"Ultrasound (US) imaging (sonography) is the most frequently performed cross-sectional diagnostic imaging modality in the field of medicine. It is non-ionizing, portable, cost-effective, and capable of real-time image acquisition and display. US is a rapidly evolving technology with substantial opportunities and challenges. Challenges include limited image quality control and high inter- and intra-operator variability. As US devices become smaller, due to progressive miniaturization of US devices in the last decade, increased computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, leading Machine Learning (ML) and Deep Learning (DL) approaches and research directions in US, with an emphasis on recent ML and DL advances is discussed. An outlook on future opportunities for ML and DL techniques to further improve clinical workflow and US-based disease diagnosis and characterization is also presented.","PeriodicalId":105413,"journal":{"name":"Machine Learning and Its Application: A Quick Guide for Beginners","volume":"345 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132735629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Regression: Prediction 回归:预测
Pub Date : 2021-12-22 DOI: 10.2174/9781681089409121010007
Indranath Chatterjee
{"title":"Regression: Prediction","authors":"Indranath Chatterjee","doi":"10.2174/9781681089409121010007","DOIUrl":"https://doi.org/10.2174/9781681089409121010007","url":null,"abstract":"","PeriodicalId":105413,"journal":{"name":"Machine Learning and Its Application: A Quick Guide for Beginners","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129592087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Machine Learning and Its Application: A Quick Guide for Beginners
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1