首页 > 最新文献

Proceedings of the Workshop on Unsupervised and Minimally Supervised Learning of Lexical Semantics - UMSLLS '09最新文献

英文 中文
Graph Connectivity Measures for Unsupervised Parameter Tuning of Graph-Based Sense Induction Systems. 基于图的感应系统无监督参数调优的图连通性度量。
Ioannis Korkontzelos, Ioannis P. Klapaftis, S. Manandhar
Word Sense Induction (WSI) is the task of identifying the different senses (uses) of a target word in a given text. This paper focuses on the unsupervised estimation of the free parameters of a graph-based WSI method, and explores the use of eight Graph Connectivity Measures (GCM) that assess the degree of connectivity in a graph. Given a target word and a set of parameters, GCM evaluate the connectivity of the produced clusters, which correspond to subgraphs of the initial (unclustered) graph. Each parameter setting is assigned a score according to one of the GCM and the highest scoring setting is then selected. Our evaluation on the nouns of SemEval-2007 WSI task (SWSI) shows that: (1) all GCM estimate a set of parameters which significantly outperform the worst performing parameter setting in both SWSI evaluation schemes, (2) all GCM estimate a set of parameters which outperform the Most Frequent Sense (MFS) baseline by a statistically significant amount in the supervised evaluation scheme, and (3) two of the measures estimate a set of parameters that performs closely to a set of parameters estimated in supervised manner.
词义归纳(WSI)是识别给定文本中目标单词的不同含义(用法)的任务。本文重点研究了基于图的WSI方法的自由参数的无监督估计,并探讨了使用8个图连通性度量(GCM)来评估图的连通性程度。给定一个目标词和一组参数,GCM评估生成的集群的连通性,这些集群对应于初始(未聚类)图的子图。每个参数设置根据其中一个GCM分配一个分数,然后选择最高的得分设置。我们对SemEval-2007 WSI任务(SWSI)的名词进行了评价,结果表明:(1)所有GCM估计的一组参数在两种SWSI评估方案中都明显优于表现最差的参数设置,(2)所有GCM估计的一组参数在监督评估方案中比最频繁感(MFS)基线的表现在统计上显著,(3)两个度量估计的一组参数与监督方式估计的一组参数表现接近。
{"title":"Graph Connectivity Measures for Unsupervised Parameter Tuning of Graph-Based Sense Induction Systems.","authors":"Ioannis Korkontzelos, Ioannis P. Klapaftis, S. Manandhar","doi":"10.3115/1641968.1641973","DOIUrl":"https://doi.org/10.3115/1641968.1641973","url":null,"abstract":"Word Sense Induction (WSI) is the task of identifying the different senses (uses) of a target word in a given text. This paper focuses on the unsupervised estimation of the free parameters of a graph-based WSI method, and explores the use of eight Graph Connectivity Measures (GCM) that assess the degree of connectivity in a graph. Given a target word and a set of parameters, GCM evaluate the connectivity of the produced clusters, which correspond to subgraphs of the initial (unclustered) graph. Each parameter setting is assigned a score according to one of the GCM and the highest scoring setting is then selected. Our evaluation on the nouns of SemEval-2007 WSI task (SWSI) shows that: (1) all GCM estimate a set of parameters which significantly outperform the worst performing parameter setting in both SWSI evaluation schemes, (2) all GCM estimate a set of parameters which outperform the Most Frequent Sense (MFS) baseline by a statistically significant amount in the supervised evaluation scheme, and (3) two of the measures estimate a set of parameters that performs closely to a set of parameters estimated in supervised manner.","PeriodicalId":106244,"journal":{"name":"Proceedings of the Workshop on Unsupervised and Minimally Supervised Learning of Lexical Semantics - UMSLLS '09","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126045671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
期刊
Proceedings of the Workshop on Unsupervised and Minimally Supervised Learning of Lexical Semantics - UMSLLS '09
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1