Pub Date : 2020-05-13DOI: 10.5772/intechopen.84608
S. Lalotra, A. Hemantaranjan, Bhudeo Rana Yashu, Rupanshee Srivastava, Sandeep Kumar
{"title":"Jasmonates: An Emerging Approach in Biotic and Abiotic Stress Tolerance","authors":"S. Lalotra, A. Hemantaranjan, Bhudeo Rana Yashu, Rupanshee Srivastava, Sandeep Kumar","doi":"10.5772/intechopen.84608","DOIUrl":"https://doi.org/10.5772/intechopen.84608","url":null,"abstract":"","PeriodicalId":107303,"journal":{"name":"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126878035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-25DOI: 10.5772/intechopen.89500
H. Miloud, G. Ali
The present study was conducted on the experimental site of INRAA, unit research of Setif. A set of 10 genotypes of durum wheat ( Triticum durum Desf.) planted during four cropping seasons (2009 – 2013). The objectives of this study are to evaluate the performance of some durum wheat genotypes and tested the efficiency of using senescence parameters in screening under semi-arid conditions. The analysis of variance demonstrates significant effects of genotypes and years on the grain yield and senescence parameters. Based on the means comparison, the values of total mean grain yield (2009 – 2013) varied from 37.84 q/ha for Oued Zenati to 44.7 q/ha for Altar84 with general mean of 42.71 q/ha. The mean rankings based on the mean grain yield demonstrate that the genotypes Mexicali75, Hoggar, and Sooty have the best ranking with highest grain yield. The mean values over years of Sa% varied between 47.91% for the genotype Oued Zenati and 59.45% for Waha. The genotypes with highest values for the parameter mid-senescence ( Σ 50s ) are the most tolerant and adapted genotypes.
{"title":"Leaf Senescence in Wheat: A Drought Tolerance Measure","authors":"H. Miloud, G. Ali","doi":"10.5772/intechopen.89500","DOIUrl":"https://doi.org/10.5772/intechopen.89500","url":null,"abstract":"The present study was conducted on the experimental site of INRAA, unit research of Setif. A set of 10 genotypes of durum wheat ( Triticum durum Desf.) planted during four cropping seasons (2009 – 2013). The objectives of this study are to evaluate the performance of some durum wheat genotypes and tested the efficiency of using senescence parameters in screening under semi-arid conditions. The analysis of variance demonstrates significant effects of genotypes and years on the grain yield and senescence parameters. Based on the means comparison, the values of total mean grain yield (2009 – 2013) varied from 37.84 q/ha for Oued Zenati to 44.7 q/ha for Altar84 with general mean of 42.71 q/ha. The mean rankings based on the mean grain yield demonstrate that the genotypes Mexicali75, Hoggar, and Sooty have the best ranking with highest grain yield. The mean values over years of Sa% varied between 47.91% for the genotype Oued Zenati and 59.45% for Waha. The genotypes with highest values for the parameter mid-senescence ( Σ 50s ) are the most tolerant and adapted genotypes.","PeriodicalId":107303,"journal":{"name":"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132902917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-14DOI: 10.5772/intechopen.89498
O. T. Fraga, B. P. Melo, L. Camargos, Debora Pellanda Fagundes, C. C. Oliveira, E. B. Simoni, Pedro A. B. Reis, E. P. Fontes
Any condition that disrupts the ER homeostasis activates a cytoprotective signaling cascade, designated as the unfolded protein response (UPR), which is transduced in plant cells by a bipartite signaling module. Activation of IRE1/ bZIP60 and bZIP28/bZIP17, which represent the bipartite signaling arms and serve as ER stress sensors and transducers, results in the upregulation of ER protein processing machinery-related genes to recover from stress. However, if the ER stress persists and the cell is unable to restore ER homeostasis, programmed cell death signaling pathways are activated for survival. Here, we describe an ER stress-induced plant-specific cell death program, which is a shared response to multiple stress signals. This signaling pathway was first identified through genome-wide expression profile of differentially expressed genes in response to combined ER stress and osmotic stress. Among them, the development and cell death domain-containing N-rich proteins (DCD/NRPs), NRP-A and NRP-B , and the transcriptional factor GmNAC81 were selected as mediators of cell death in plants. These genes were used as targets to identify additional components of the cell death pathway, which is described here as a regulatory circuit that integrates a stress-induced cell death program with leaf senescence via the NRP-A/NRP-B/GmNAC81:GmNAC30/VPE signaling module.
{"title":"A Regulatory Circuit Integrating Stress-Induced with Natural Leaf Senescence","authors":"O. T. Fraga, B. P. Melo, L. Camargos, Debora Pellanda Fagundes, C. C. Oliveira, E. B. Simoni, Pedro A. B. Reis, E. P. Fontes","doi":"10.5772/intechopen.89498","DOIUrl":"https://doi.org/10.5772/intechopen.89498","url":null,"abstract":"Any condition that disrupts the ER homeostasis activates a cytoprotective signaling cascade, designated as the unfolded protein response (UPR), which is transduced in plant cells by a bipartite signaling module. Activation of IRE1/ bZIP60 and bZIP28/bZIP17, which represent the bipartite signaling arms and serve as ER stress sensors and transducers, results in the upregulation of ER protein processing machinery-related genes to recover from stress. However, if the ER stress persists and the cell is unable to restore ER homeostasis, programmed cell death signaling pathways are activated for survival. Here, we describe an ER stress-induced plant-specific cell death program, which is a shared response to multiple stress signals. This signaling pathway was first identified through genome-wide expression profile of differentially expressed genes in response to combined ER stress and osmotic stress. Among them, the development and cell death domain-containing N-rich proteins (DCD/NRPs), NRP-A and NRP-B , and the transcriptional factor GmNAC81 were selected as mediators of cell death in plants. These genes were used as targets to identify additional components of the cell death pathway, which is described here as a regulatory circuit that integrates a stress-induced cell death program with leaf senescence via the NRP-A/NRP-B/GmNAC81:GmNAC30/VPE signaling module.","PeriodicalId":107303,"journal":{"name":"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123932161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-27DOI: 10.5772/INTECHOPEN.86202
A. Moges, Y. Moges
The main purpose of this review is to document medicinal plants used for traditional treatments with their parts, use, ecology, and quality control. Accordingly, 80 medicinal plant species were reviewed; leaves and roots are the main parts of the plants used for preparation of traditional medicines. The local practitioners provided various traditional medications to their patients’ diseases such as stomach-aches, asthma, dysentery, malaria, evil eyes, cancer, skin diseases, and headaches. The uses of medicinal plants for human and animal treatments are practiced from time immemorial. Stream/riverbanks, cultivated lands, disturbed sites, bushlands, forested areas and their margins, woodlands, grasslands, and home gardens are major habitats of medicinal plants. Generally, medicinal plants used for traditional medicine play a significant role in the healthcare of the majority of the people in Ethiopia. The major threats to medicinal plants are habitat destruction, urbanization, agricultural expansion, investment, road construction, and deforestation. Because of these, medicinal plants are being declined and lost with their habitats. Community- and research-based conservation mechanisms could be an appropriate approach for mitigating the problems pertinent to the loss of medicinal plants and their habitats and for documenting medicinal plants. Chromatography; electrophoretic, macroscopic, and microscopic techniques; and pharmaceutical practice are mainly used for quality control of herbal medicines.
{"title":"Ethiopian Common Medicinal Plants: Their Parts and Uses in Traditional Medicine - Ecology and Quality Control","authors":"A. Moges, Y. Moges","doi":"10.5772/INTECHOPEN.86202","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86202","url":null,"abstract":"The main purpose of this review is to document medicinal plants used for traditional treatments with their parts, use, ecology, and quality control. Accordingly, 80 medicinal plant species were reviewed; leaves and roots are the main parts of the plants used for preparation of traditional medicines. The local practitioners provided various traditional medications to their patients’ diseases such as stomach-aches, asthma, dysentery, malaria, evil eyes, cancer, skin diseases, and headaches. The uses of medicinal plants for human and animal treatments are practiced from time immemorial. Stream/riverbanks, cultivated lands, disturbed sites, bushlands, forested areas and their margins, woodlands, grasslands, and home gardens are major habitats of medicinal plants. Generally, medicinal plants used for traditional medicine play a significant role in the healthcare of the majority of the people in Ethiopia. The major threats to medicinal plants are habitat destruction, urbanization, agricultural expansion, investment, road construction, and deforestation. Because of these, medicinal plants are being declined and lost with their habitats. Community- and research-based conservation mechanisms could be an appropriate approach for mitigating the problems pertinent to the loss of medicinal plants and their habitats and for documenting medicinal plants. Chromatography; electrophoretic, macroscopic, and microscopic techniques; and pharmaceutical practice are mainly used for quality control of herbal medicines.","PeriodicalId":107303,"journal":{"name":"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130563151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-05DOI: 10.5772/intechopen.88162
Marcelo R. Pace
Phloem is the vascular tissue in charge of transport and distribution of the organic nutrients. The phloem is also a pathway to signaling molecules and has a structural function in the plant body. It is typically composed of three cell types: sieve elements, parenchyma, and sclerenchyma. The sieve elements have the main function of transport and typically have lost their nuclei and other organelles in the course of their specialization. Hence, the sieve elements rely on specialized neighboring parenchyma cells to sustain all of their physiological function and activities. All cell types of the phloem may vary morphologically and in their distribution in the tissue, and this diversity is taxonomic and functionally informative. The phloem can be of primary or secondary origin, being derived from either procambium or cambium, respectively. Some vascular plant lineages have exclusive primary phloem, such as the lycophytes, ferns, and the monocotyledons, and the sieve elements will be long living in these taxa. In plants with secondary growth, the secondary phloem is formed, and typically the primary phloem collapses. Because new secondary phloem is constantly formed, the longevity of sieve elements in the secondary plant body is much more reduced. In this chapter, the structure of the phloem and its cell types are described in detail and also some of the known commercial uses of this tissue.
{"title":"Phloem: Cell Types, Structure, and Commercial Uses","authors":"Marcelo R. Pace","doi":"10.5772/intechopen.88162","DOIUrl":"https://doi.org/10.5772/intechopen.88162","url":null,"abstract":"Phloem is the vascular tissue in charge of transport and distribution of the organic nutrients. The phloem is also a pathway to signaling molecules and has a structural function in the plant body. It is typically composed of three cell types: sieve elements, parenchyma, and sclerenchyma. The sieve elements have the main function of transport and typically have lost their nuclei and other organelles in the course of their specialization. Hence, the sieve elements rely on specialized neighboring parenchyma cells to sustain all of their physiological function and activities. All cell types of the phloem may vary morphologically and in their distribution in the tissue, and this diversity is taxonomic and functionally informative. The phloem can be of primary or secondary origin, being derived from either procambium or cambium, respectively. Some vascular plant lineages have exclusive primary phloem, such as the lycophytes, ferns, and the monocotyledons, and the sieve elements will be long living in these taxa. In plants with secondary growth, the secondary phloem is formed, and typically the primary phloem collapses. Because new secondary phloem is constantly formed, the longevity of sieve elements in the secondary plant body is much more reduced. In this chapter, the structure of the phloem and its cell types are described in detail and also some of the known commercial uses of this tissue.","PeriodicalId":107303,"journal":{"name":"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro","volume":"31 3‐4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120838405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-08DOI: 10.5772/INTECHOPEN.83556
Hsiang-Ting Lee, Wen Huang
Nonregenerable calli (NRC) derived from immature seeds of japonica rice were inoculated on MS medium containing 10 μM 2,4-D (MSD10). They turned to highly regenerable calli (HRC) when sorbitol was supplemented into the medium. Meanwhile, high levels of endogenous IAA and ABA were accumulated in HRC. Exogenous IAA precursor and ABA in MSD10 have the same effect to enhance regeneration ability. However, there are only partial effects if IAA precursor or ABA was supplemented, respectively. The regeneration ability is prominently decreased from 75% to 25% while an auxin transport inhibitor, 2,3,5-triiodobenzoic acid, was included in the medium. It suggested that endogenous auxin signal and ABA may involve in the induction of HRC. Furthermore, it showed higher contents of glucose, sucrose, and starch and higher expression levels of wall-bound invertase 1, sucrose transporter 1 (OsSUT1), and OsSUT2 genes in HRC than in NRC. The expression levels of PIN-formed 1 and LEA1 were also consistent with the trend of carbohydrate metabolisms. We thus concluded a flowchart for HRC induction by osmotic stress. According to the hypothesis, osmotic stress may regulate endogenous levels of auxin interacting with ABA, then affect carbohydrate metabolism to trigger callus initiation and further shoot regeneration in rice.
将粳稻未成熟种子的不可再生愈伤组织(NRC)接种于含有10 μM 2,4- d (MSD10)的MS培养基上。当培养基中添加山梨糖醇时,愈伤组织变成高度再生的(HRC)。同时,内源IAA和ABA在HRC中积累水平较高。外源IAA前体和ABA对MSD10的再生能力有相同的增强作用。而分别添加IAA前体和ABA只会产生部分影响。当培养基中加入生长素运输抑制剂2,3,5-三碘苯甲酸时,再生能力从75%显著下降到25%。提示内源性生长素信号和ABA可能参与了HRC的诱导。与NRC相比,HRC中葡萄糖、蔗糖和淀粉含量较高,壁结合转化酶1、蔗糖转运蛋白1 (OsSUT1)和OsSUT2基因表达水平较高。pin - formation 1和LEA1的表达水平也与碳水化合物代谢的趋势一致。因此,我们总结了渗透胁迫诱导HRC的流程图。根据这一假说,渗透胁迫可能通过调控内源生长素水平与ABA相互作用,进而影响碳水化合物代谢,促进水稻愈伤组织形成和茎部再生。
{"title":"Cross Talk among Phytohormone Signal and Carbohydrate Metabolism Involving Regenerable Calli Induction under Osmotic Treatment","authors":"Hsiang-Ting Lee, Wen Huang","doi":"10.5772/INTECHOPEN.83556","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83556","url":null,"abstract":"Nonregenerable calli (NRC) derived from immature seeds of japonica rice were inoculated on MS medium containing 10 μM 2,4-D (MSD10). They turned to highly regenerable calli (HRC) when sorbitol was supplemented into the medium. Meanwhile, high levels of endogenous IAA and ABA were accumulated in HRC. Exogenous IAA precursor and ABA in MSD10 have the same effect to enhance regeneration ability. However, there are only partial effects if IAA precursor or ABA was supplemented, respectively. The regeneration ability is prominently decreased from 75% to 25% while an auxin transport inhibitor, 2,3,5-triiodobenzoic acid, was included in the medium. It suggested that endogenous auxin signal and ABA may involve in the induction of HRC. Furthermore, it showed higher contents of glucose, sucrose, and starch and higher expression levels of wall-bound invertase 1, sucrose transporter 1 (OsSUT1), and OsSUT2 genes in HRC than in NRC. The expression levels of PIN-formed 1 and LEA1 were also consistent with the trend of carbohydrate metabolisms. We thus concluded a flowchart for HRC induction by osmotic stress. According to the hypothesis, osmotic stress may regulate endogenous levels of auxin interacting with ABA, then affect carbohydrate metabolism to trigger callus initiation and further shoot regeneration in rice.","PeriodicalId":107303,"journal":{"name":"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133298124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}