首页 > 最新文献

Terahertz Photonics最新文献

英文 中文
Front Matter: Volume 11348 封面:第11348卷
Pub Date : 2020-04-16 DOI: 10.1117/12.2571397
{"title":"Front Matter: Volume 11348","authors":"","doi":"10.1117/12.2571397","DOIUrl":"https://doi.org/10.1117/12.2571397","url":null,"abstract":"","PeriodicalId":113454,"journal":{"name":"Terahertz Photonics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122182975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach for lensless high-resolution terahertz imaging (Conference Presentation) 一种无透镜高分辨率太赫兹成像的新方法(会议报告)
Pub Date : 2020-03-30 DOI: 10.1117/12.2554007
D. Damyanov, B. Friederich, K. Kolpatzeck, Xuan Liu, A. Czylwik, T. Schultze, I. Willms, J. Balzer
Terahertz time-domain systems are known as a precise imaging tool. These systems make use of parabolic mirrors or lenses to illuminate a small spot of a sample under test. By moving the sample or the sensor head, an image can be recorded. This imaging technique guarantees a high signal-to-noise ratio and large bandwidth. However, using this method a priori knowledge of the sample shape is needed for the correct focusing of the system. This limits the performance and robustness of the imaging system as only specular reflections are considered for the image. Here, we propose a fast reflection-based broadband terahertz time-domain imaging method that overcomes these hurdles by making use of both the specular and diffuse reflections of a divergent terahertz beam. The proposed method employs no optical lenses or mirrors but uses signal processing and classical radar migration techniques. High-resolution imaging is achieved by focusing the divergent terahertz beam via post-processing. To compensate the inherent poor signal-to-noise ratio of the unfocused terahertz beam, calibration and post-processing methods are used. For the evaluation of the imaging method, geometrically complex samples are scanned by a fast terahertz time-domain spectroscopy system based on electronically controlled optical sampling. The bandwidth achieved with the divergent beam is 2.5 THz with a signal-to-noise ratio of around 30 dB. We demonstrate that this method is capable to generate high-resolution 2D terahertz images of objects with arbitrary size, shape, orientation and relative position to the emitter and detector antennas. Objects with sub-mm dimension can be clearly reconstructed for arbitrary positions and orientation achieving resolution in the µm region. Furthermore, the presented method can be applied for any reflection-based scenarios and antenna configuration.
太赫兹时域系统被认为是一种精确的成像工具。这些系统利用抛物面镜或透镜来照亮被测样品的一个小点。通过移动样品或传感器头,可以记录图像。这种成像技术保证了高信噪比和大带宽。然而,使用这种方法需要对样品形状的先验知识来正确聚焦系统。这限制了成像系统的性能和鲁棒性,因为只有镜面反射的图像被考虑。在这里,我们提出了一种基于快速反射的宽带太赫兹时域成像方法,该方法通过利用发散太赫兹光束的镜面反射和漫反射来克服这些障碍。该方法不使用光学透镜或反射镜,而是使用信号处理和经典的雷达偏移技术。高分辨率成像是通过后处理聚焦发散的太赫兹光束来实现的。为了补偿未聚焦太赫兹光束固有的差信噪比,采用了校准和后处理方法。为了评估成像方法,利用基于电控光学采样的快速太赫兹时域光谱系统对几何复杂样品进行了扫描。发散波束的带宽为2.5太赫兹,信噪比约为30 dB。我们证明了这种方法能够生成任意大小、形状、方向和相对于发射器和探测器天线位置的物体的高分辨率2D太赫兹图像。亚mm尺寸的物体可以在任意位置和方向上清晰地重建,达到µm区域的分辨率。此外,该方法可适用于任何基于反射的场景和天线配置。
{"title":"A novel approach for lensless high-resolution terahertz imaging (Conference Presentation)","authors":"D. Damyanov, B. Friederich, K. Kolpatzeck, Xuan Liu, A. Czylwik, T. Schultze, I. Willms, J. Balzer","doi":"10.1117/12.2554007","DOIUrl":"https://doi.org/10.1117/12.2554007","url":null,"abstract":"Terahertz time-domain systems are known as a precise imaging tool. These systems make use of parabolic mirrors or lenses to illuminate a small spot of a sample under test. By moving the sample or the sensor head, an image can be recorded. This imaging technique guarantees a high signal-to-noise ratio and large bandwidth. However, using this method a priori knowledge of the sample shape is needed for the correct focusing of the system. This limits the performance and robustness of the imaging system as only specular reflections are considered for the image. Here, we propose a fast reflection-based broadband terahertz time-domain imaging method that overcomes these hurdles by making use of both the specular and diffuse reflections of a divergent terahertz beam. The proposed method employs no optical lenses or mirrors but uses signal processing and classical radar migration techniques. High-resolution imaging is achieved by focusing the divergent terahertz beam via post-processing. To compensate the inherent poor signal-to-noise ratio of the unfocused terahertz beam, calibration and post-processing methods are used. For the evaluation of the imaging method, geometrically complex samples are scanned by a fast terahertz time-domain spectroscopy system based on electronically controlled optical sampling. The bandwidth achieved with the divergent beam is 2.5 THz with a signal-to-noise ratio of around 30 dB. We demonstrate that this method is capable to generate high-resolution 2D terahertz images of objects with arbitrary size, shape, orientation and relative position to the emitter and detector antennas. Objects with sub-mm dimension can be clearly reconstructed for arbitrary positions and orientation achieving resolution in the µm region. Furthermore, the presented method can be applied for any reflection-based scenarios and antenna configuration.","PeriodicalId":113454,"journal":{"name":"Terahertz Photonics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124673974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D THz spectroscopic investigation of ballistic conduction-band electron dynamics in InSb (Conference Presentation) 对 InSb 中弹道导带电子动力学的二维太赫兹光谱学研究(会议发言)
Pub Date : 2020-03-10 DOI: 10.1117/12.2543969
Sarah Houver, Lucas Huber, Matteo Savoini, Elsa Abreu, Steven L. Johnson
In semiconductors and semimetals, strong THz electric fields can induce a controlled coherent motion of the electrons in the conduction band, via ballistic excitation. In the first picoseconds after THz excitation, the nonlinearities induced by this coherent excitation prevail before more incoherent high field effects start dominating the nonlinear response. Disentangling these different nonlinear contributions with 2D THz spectroscopy, we follow the trajectory of the out-of-equilibrium electron population in low-bandgap semiconductor InSb and. We then extract information on the conduction band curvature and evaluate its anharmonicity and its anisotropy, close to the Gamma-point.
在半导体和半金属中,强太赫兹电场可通过弹道激励诱导导带中的电子产生受控的相干运动。在太赫兹激发后的最初几皮秒内,这种相干激发所诱发的非线性效应占主导地位,然后更多的非相干高场效应开始主导非线性响应。利用二维太赫兹光谱学来析出这些不同的非线性贡献,我们可以跟踪低带隙半导体铟硒化物(InSb)中非平衡态电子群的轨迹。然后,我们提取了导带曲率的信息,并评估了其接近伽马点的非谐波性及其各向异性。
{"title":"2D THz spectroscopic investigation of ballistic conduction-band electron dynamics in InSb (Conference Presentation)","authors":"Sarah Houver, Lucas Huber, Matteo Savoini, Elsa Abreu, Steven L. Johnson","doi":"10.1117/12.2543969","DOIUrl":"https://doi.org/10.1117/12.2543969","url":null,"abstract":"In semiconductors and semimetals, strong THz electric fields can induce a controlled coherent motion of the electrons in the conduction band, via ballistic excitation. In the first picoseconds after THz excitation, the nonlinearities induced by this coherent excitation prevail before more incoherent high field effects start dominating the nonlinear response. Disentangling these different nonlinear contributions with 2D THz spectroscopy, we follow the trajectory of the out-of-equilibrium electron population in low-bandgap semiconductor InSb and. We then extract information on the conduction band curvature and evaluate its anharmonicity and its anisotropy, close to the Gamma-point.","PeriodicalId":113454,"journal":{"name":"Terahertz Photonics","volume":" 32","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141223790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Terahertz Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1