首页 > 最新文献

Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19最新文献

英文 中文
GALLOP 疾驰
Adnan Aijaz, Aleksandar Stanoev, Usman Raza
Various legacy and emerging industrial applications require closed-loop control over multiple hops. Existing multi-hop wireless technologies do not completely fulfill the stringent requirements of closed-loop control. This paper proposes a novel wireless solution, termed as GALLOP, for closed-loop control over multi-hop networks. GALLOP adopts a pragmatic approach for tackling the peculiarities of closed-loop control. Key aspects of GALLOP design include control-aware multi-hop scheduling for cyclic information exchange with very low and deterministic latency, cooperative transmissions for very high reliability and low-overhead signaling mechanism for scalable operation in large-scale networks. GALLOP has been specifically designed for control loops closed over the whole multi-hop network with dynamics on the order of few milliseconds. Performance evaluation through hardware implementation on a Bluetooth 5 testbed and system-level simulations demonstrate the viability of GALLOP in providing high-performance connectivity as required by closed-loop control applications.
{"title":"GALLOP","authors":"Adnan Aijaz, Aleksandar Stanoev, Usman Raza","doi":"10.1145/3356401.3356413","DOIUrl":"https://doi.org/10.1145/3356401.3356413","url":null,"abstract":"Various legacy and emerging industrial applications require closed-loop control over multiple hops. Existing multi-hop wireless technologies do not completely fulfill the stringent requirements of closed-loop control. This paper proposes a novel wireless solution, termed as GALLOP, for closed-loop control over multi-hop networks. GALLOP adopts a pragmatic approach for tackling the peculiarities of closed-loop control. Key aspects of GALLOP design include control-aware multi-hop scheduling for cyclic information exchange with very low and deterministic latency, cooperative transmissions for very high reliability and low-overhead signaling mechanism for scalable operation in large-scale networks. GALLOP has been specifically designed for control loops closed over the whole multi-hop network with dynamics on the order of few milliseconds. Performance evaluation through hardware implementation on a Bluetooth 5 testbed and system-level simulations demonstrate the viability of GALLOP in providing high-performance connectivity as required by closed-loop control applications.","PeriodicalId":115175,"journal":{"name":"Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129264100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
ACCEPTOR 受体
J. Goossens, Xavier Poczekajlo, Antonio Paolillo, Paul Rodríguez
In this work, we consider hard real-time applications scheduled upon heterogeneous multiprocessor platforms. The originality of this study is to consider multi-mode real-time applications (software aspects) and reconfigurable-heterogeneous hardware platforms (composed of CPUs, GPUs, FPGAs...). Our approach is based on a multi-mode protocol, for mode-dependent tasks upon reconfigurable hardware. The goal is to handle predictable switches between different task sets and different hardware settings. The novelty here is the dynamic hardware and software reconfigurability. First, we propose a formal model of the applications and reconfigurable hardware platforms. We then propose and prove correct a mode change protocol. We propose in particular a validity test for the verification of the timing constraints of the application --- including the time allowed to complete a mode change. We also perform a complete evaluation. We study the theoretical complexity of the protocol, use a simulation to evaluate the efficiency of our solution, and finally propose a competitive analysis of our protocol to prove that it is 2-competitive.
{"title":"ACCEPTOR","authors":"J. Goossens, Xavier Poczekajlo, Antonio Paolillo, Paul Rodríguez","doi":"10.1145/3356401.3356420","DOIUrl":"https://doi.org/10.1145/3356401.3356420","url":null,"abstract":"In this work, we consider hard real-time applications scheduled upon heterogeneous multiprocessor platforms. The originality of this study is to consider multi-mode real-time applications (software aspects) and reconfigurable-heterogeneous hardware platforms (composed of CPUs, GPUs, FPGAs...). Our approach is based on a multi-mode protocol, for mode-dependent tasks upon reconfigurable hardware. The goal is to handle predictable switches between different task sets and different hardware settings. The novelty here is the dynamic hardware and software reconfigurability. First, we propose a formal model of the applications and reconfigurable hardware platforms. We then propose and prove correct a mode change protocol. We propose in particular a validity test for the verification of the timing constraints of the application --- including the time allowed to complete a mode change. We also perform a complete evaluation. We study the theoretical complexity of the protocol, use a simulation to evaluate the efficiency of our solution, and finally propose a competitive analysis of our protocol to prove that it is 2-competitive.","PeriodicalId":115175,"journal":{"name":"Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122687208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1