首页 > 最新文献

Introduction to High-Dimensional Statistics最新文献

英文 中文
Convex Criteria 凸的标准
Pub Date : 2021-08-24 DOI: 10.1201/9781003158745-5
C. Giraud
{"title":"Convex Criteria","authors":"C. Giraud","doi":"10.1201/9781003158745-5","DOIUrl":"https://doi.org/10.1201/9781003158745-5","url":null,"abstract":"","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122967270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering 聚类
Pub Date : 2021-08-24 DOI: 10.1201/9781003158745-12
C. Giraud
Background: Both genetic and environmental factors contribute to human diseases. Most common diseases are influenced by a large number of genetic and environmental factors, most of which individually have only a modest effect on the disease. Though genetic contributions are relatively well characterized for some monogenetic diseases, there has been no effort at curating the extensive list of environmental etiological factors. Results: From a comprehensive search of the MeSH annotation of MEDLINE articles, we identified 3,342 environmental etiological factors associated with 3,159 diseases. We also identified 1,100 genes associated with 1,034 complex diseases from the NIH Genetic Association Database (GAD), a database of genetic association studies. 863 diseases have both genetic and environmental etiological factors available. Integrating genetic and environmental factors results in the "etiome", which we define as the comprehensive compendium of disease etiology. Clustering of environmental factors may alert clinicians of the risks of added exposures, or synergy in interventions to alter these factors. Clustering of both genetic and environmental etiological factors puts genes in the context of environment in a quantitative manner. Conclusion: In this paper, we obtained a comprehensive list of associations between disease and environmental factors using MeSH annotation of MEDLINE articles. It serves as a summary of current knowledge between etiological factors and diseases. By combining the environmental etiological factors and genetic factors from GAD, we computed the "etiome" profile for 863 diseases. Comparing diseases across these profiles may have utility for clinical medicine, basic science research, and population-based science.
背景:遗传和环境因素对人类疾病都有影响。大多数常见疾病受到大量遗传和环境因素的影响,其中大多数单独对疾病的影响不大。虽然遗传因素对某些单基因疾病的影响相对较好,但没有努力整理环境病因的广泛清单。结果:通过对MEDLINE文章的MeSH注释的全面检索,我们确定了3,342种与3,159种疾病相关的环境病因。我们还从美国国立卫生研究院遗传协会数据库(GAD)(一个遗传关联研究数据库)中确定了1100个与1034种复杂疾病相关的基因。863种疾病既有遗传因素,也有环境因素。将遗传因素和环境因素结合起来形成“时间组”,我们将其定义为疾病病因学的综合纲要。环境因素的聚类可能会提醒临床医生增加暴露的风险,或者在干预措施中协同改变这些因素。遗传和环境因素的聚类使基因以定量的方式置于环境的背景下。结论:本文通过MEDLINE文章的MeSH标注,获得了疾病与环境因素之间的综合关联列表。它是对病因和疾病之间现有知识的总结。通过结合GAD的环境病因和遗传因素,我们计算了863种疾病的“时间组”谱。通过这些特征比较疾病可能对临床医学、基础科学研究和基于人口的科学有实用价值。
{"title":"Clustering","authors":"C. Giraud","doi":"10.1201/9781003158745-12","DOIUrl":"https://doi.org/10.1201/9781003158745-12","url":null,"abstract":"Background: Both genetic and environmental factors contribute to human diseases. Most common diseases are influenced by a large number of genetic and environmental factors, most of which individually have only a modest effect on the disease. Though genetic contributions are relatively well characterized for some monogenetic diseases, there has been no effort at curating the extensive list of environmental etiological factors. Results: From a comprehensive search of the MeSH annotation of MEDLINE articles, we identified 3,342 environmental etiological factors associated with 3,159 diseases. We also identified 1,100 genes associated with 1,034 complex diseases from the NIH Genetic Association Database (GAD), a database of genetic association studies. 863 diseases have both genetic and environmental etiological factors available. Integrating genetic and environmental factors results in the \"etiome\", which we define as the comprehensive compendium of disease etiology. Clustering of environmental factors may alert clinicians of the risks of added exposures, or synergy in interventions to alter these factors. Clustering of both genetic and environmental etiological factors puts genes in the context of environment in a quantitative manner. Conclusion: In this paper, we obtained a comprehensive list of associations between disease and environmental factors using MeSH annotation of MEDLINE articles. It serves as a summary of current knowledge between etiological factors and diseases. By combining the environmental etiological factors and genetic factors from GAD, we computed the \"etiome\" profile for 863 diseases. Comparing diseases across these profiles may have utility for clinical medicine, basic science research, and population-based science.","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122409375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimax Lower Bounds 极大极小下界
Pub Date : 2021-08-24 DOI: 10.1201/9781003158745-3
C. Giraud
{"title":"Minimax Lower Bounds","authors":"C. Giraud","doi":"10.1201/9781003158745-3","DOIUrl":"https://doi.org/10.1201/9781003158745-3","url":null,"abstract":"","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129559994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimator Selection 估计量选择
Pub Date : 2021-08-24 DOI: 10.1201/9781003158745-7
C. Giraud
. The paper presents recent developments of the theory of estimator selection. We introduce, in the density estimation framework, the main methods used by the participants of the session "Variable and estimator selection" in the Journées MAS 2014. The purpose of the selection is always to prove oracle inequalities, that is, to compare the selected estimator with the best estimator in the original collection via some risk function. The first part of the paper deals with the selection by minimization of a penalized empirical loss and the second presents the methods based on robust tests. Résumé. L’article présente quelques développements récents de la théorie de la sélection d’estimateurs. Nous introduisons, dans le cadre élémentaire de l’estimation de la densité, les principales méthodes ap-parues dans les exposés de la session "Sélections de variables, sélection d’estimateurs" des Journées MAS 2014. L’objectif de la sélection est toujours l’obtention d’inégalités oracle comparant le risque de l’estimateur choisi au plus petit des risques des estimateurs de la collection initiale. Nous discuterons dans une première partie les méthodes par minimisation d’un critère pénalisé et dans une seconde celles utilisant les tests robustes.
。The paper presents recent developments of The theory of estimator选择。在密度估计框架中,我们介绍了2014年MAS日“变量和估计量选择”会议参与者使用的主要方法。oracle的目的》选择is always to prove inequalities, that is to The estimator选编》比作with The best estimator透过诗risk in The original收藏功能。秋季with The rstfipart of The paper》by minimization of a penalized经验性选择loss and The second presents The方法基于鲁棒测试。摘要。本文介绍了估计量选择理论的一些最新发展。在密度估计的基本框架内,我们介绍了在MAS 2014“变量选择,估计量选择”会议上发表的主要方法。选择的目的总是通过比较所选估计器的风险与初始集合估计器的最小风险来获得oracle不等式。在第一部分中,我们将讨论最小化惩罚标准的方法,在第二部分中,我们将讨论使用鲁棒测试的方法。
{"title":"Estimator Selection","authors":"C. Giraud","doi":"10.1201/9781003158745-7","DOIUrl":"https://doi.org/10.1201/9781003158745-7","url":null,"abstract":". The paper presents recent developments of the theory of estimator selection. We introduce, in the density estimation framework, the main methods used by the participants of the session \"Variable and estimator selection\" in the Journées MAS 2014. The purpose of the selection is always to prove oracle inequalities, that is, to compare the selected estimator with the best estimator in the original collection via some risk function. The first part of the paper deals with the selection by minimization of a penalized empirical loss and the second presents the methods based on robust tests. Résumé. L’article présente quelques développements récents de la théorie de la sélection d’estimateurs. Nous introduisons, dans le cadre élémentaire de l’estimation de la densité, les principales méthodes ap-parues dans les exposés de la session \"Sélections de variables, sélection d’estimateurs\" des Journées MAS 2014. L’objectif de la sélection est toujours l’obtention d’inégalités oracle comparant le risque de l’estimateur choisi au plus petit des risques des estimateurs de la collection initiale. Nous discuterons dans une première partie les méthodes par minimisation d’un critère pénalisé et dans une seconde celles utilisant les tests robustes.","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125506627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Model Selection 模型选择
Pub Date : 2021-08-24 DOI: 10.1201/9781003158745-2
C. Giraud
{"title":"Model Selection","authors":"C. Giraud","doi":"10.1201/9781003158745-2","DOIUrl":"https://doi.org/10.1201/9781003158745-2","url":null,"abstract":"","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128704631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterative Algorithms 迭代算法
Pub Date : 2021-08-24 DOI: 10.1201/9781003158745-6
C. Giraud
{"title":"Iterative Algorithms","authors":"C. Giraud","doi":"10.1201/9781003158745-6","DOIUrl":"https://doi.org/10.1201/9781003158745-6","url":null,"abstract":"","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133264253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Multivariate Regression 多元回归
Pub Date : 2021-08-24 DOI: 10.1007/978-1-4419-1428-6_5042
C. Giraud
{"title":"Multivariate Regression","authors":"C. Giraud","doi":"10.1007/978-1-4419-1428-6_5042","DOIUrl":"https://doi.org/10.1007/978-1-4419-1428-6_5042","url":null,"abstract":"","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114275436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supervised Classification 监督分类
Pub Date : 2021-08-24 DOI: 10.1201/9781003158745-11
C. Giraud
{"title":"Supervised Classification","authors":"C. Giraud","doi":"10.1201/9781003158745-11","DOIUrl":"https://doi.org/10.1201/9781003158745-11","url":null,"abstract":"","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134221358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aggregation of Estimators 估计量的集合
Pub Date : 2014-12-17 DOI: 10.1201/B17895-6
C. Giraud
{"title":"Aggregation of Estimators","authors":"C. Giraud","doi":"10.1201/B17895-6","DOIUrl":"https://doi.org/10.1201/B17895-6","url":null,"abstract":"","PeriodicalId":119847,"journal":{"name":"Introduction to High-Dimensional Statistics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122184372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Introduction to High-Dimensional Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1