The majority of Indonesia's waste is organic and could potentially be converted to energy. The most effective method for converting waste into energy is gasification with updraft gasifier. Different types of waste are contained in organic waste, which has a high moisture content ranging from 16.95% to 53.74% collected from TPST Piyungan, Yogyakarta. The effect of moisture content which are categorized as low, medium, and high on operation time, fuel conversion rate and heating rate is the main thing observed in this study. The ideal value for the organic waste moisture content that can be obtained for a successful gasification operation is 15.68%. The operational time range of 61.57 to 193.69 minutes, with optimum value of 66.68 minutes, sehingga menghasilkan nilai FCR optimal sebesar 38,28 gram/menit dan nilai laju pemanasan dengan nilai berturut-turut untuk IH (Initial Heating Rate) 37,10 oC/menit dan MH (Maximum Heating Rate) 19,96 oC/menit. The desired product quantity in ideal conditions is 86% for gas, 8% for liquid, and 6% for solids. Based on the complete testing process, the quantity of gas products (55.31 to 88.65%), followed by liquid products (1.64 to 4.57%) and solids (9.71 to 40.12%).
印度尼西亚的大部分垃圾都是有机的,有可能转化为能源。将废物转化为能源的最有效方法是用上升气流气化炉气化。有机废物中含有不同类型的废物,这些有机废物的含水率很高,从日惹Piyungan TPST收集到16.95%至53.74%。本研究主要观察了低、中、高含水率对运行时间、燃料转化率和加热速率的影响。成功气化操作所能获得的有机废物含水率的理想值为15.68%。运行时间范围为61.57 ~ 193.69 min,最优值为66.68 min, sehinga menghasilkan nilai FCR最优值为38,28 g / min, nilai laju pemanasan dengan nilai berturut-turut untuk IH(初始升温速率)37,10 oC/ min, MH(最大升温速率)19,96 oC/ min。理想条件下所需的产物量为气体86%,液体8%,固体6%。从完整的测试过程来看,气体产品的数量为55.31 ~ 88.65%,其次是液体产品(1.64 ~ 4.57%)和固体产品(9.71 ~ 40.12%)。
{"title":"Gasification GASIFICATION OF ORGANIC WASTE IN UPDRAFT GASIFIER","authors":"Mhd Faisal Ain Lubis","doi":"10.22146/free.v2i1.7006","DOIUrl":"https://doi.org/10.22146/free.v2i1.7006","url":null,"abstract":"The majority of Indonesia's waste is organic and could potentially be converted to energy. The most effective method for converting waste into energy is gasification with updraft gasifier. Different types of waste are contained in organic waste, which has a high moisture content ranging from 16.95% to 53.74% collected from TPST Piyungan, Yogyakarta. The effect of moisture content which are categorized as low, medium, and high on operation time, fuel conversion rate and heating rate is the main thing observed in this study. The ideal value for the organic waste moisture content that can be obtained for a successful gasification operation is 15.68%. The operational time range of 61.57 to 193.69 minutes, with optimum value of 66.68 minutes, sehingga menghasilkan nilai FCR optimal sebesar 38,28 gram/menit dan nilai laju pemanasan dengan nilai berturut-turut untuk IH (Initial Heating Rate) 37,10 oC/menit dan MH (Maximum Heating Rate) 19,96 oC/menit. The desired product quantity in ideal conditions is 86% for gas, 8% for liquid, and 6% for solids. Based on the complete testing process, the quantity of gas products (55.31 to 88.65%), followed by liquid products (1.64 to 4.57%) and solids (9.71 to 40.12%).","PeriodicalId":120071,"journal":{"name":"Frontiers in Renewable Energy","volume":"10 S6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138623258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to design a PEM electrolysis-based hydrogen reactor and the potential for hydrogen production at Baron Beach, Gunung Kidul, Yogyakarta. Based on the calculation done at the initial process, the electrical energy potentially generated from renewable energy, such as wind, waves, and solar, reached 10.7 MW. This study also investigated the effect of reactor operating temperature on reactor efficiency and hydrogen production. A numerical thermodynamic approach was applied in the design process. The model, validated by laboratory experiments by other institutions, was in good agreement with previous research with an error value of 13%. The temperature range was dynamically limited from 30 to 80°C. The optimum operating conditions occurred when the temperature was set at 80 °C with a reactor efficiency, a water consumption rate, and a hydrogen production capacity of 76.3%, 2.817 kg/hour, and 250.42 kg/hour, respectively. The raw material, namely seawater, was processed using the reverse osmosis method. Ten reactors (with 13 cells per reactor) were installed in parallel.
本研究旨在设计一个基于PEM电解的氢反应器,并在日惹的Baron Beach, Gunung Kidul生产氢。根据初始阶段的计算,风能、海浪和太阳能等可再生能源可能产生的电能达到10.7兆瓦。研究了反应器操作温度对反应器效率和产氢量的影响。在设计过程中采用了数值热力学方法。该模型经其他机构的室内实验验证,与前人的研究结果吻合较好,误差值为13%。温度范围动态限制在30 ~ 80℃。最佳操作条件为温度为80℃,反应器效率为76.3%,耗水量为2.817 kg/h,产氢能力为250.42 kg/h。以海水为原料,采用反渗透法进行处理。10个反应器(每个反应器13个电池)并联安装。
{"title":"Designing PEM Electrolysis-Based Hydrogen Reactors In The Area of Baron Beach Of Yogyakarta, Indonesia","authors":"D. Nugroho, A. Budiman, E. Suyono, W. Wilopo","doi":"10.22146/free.v1i1.3816","DOIUrl":"https://doi.org/10.22146/free.v1i1.3816","url":null,"abstract":"This study aimed to design a PEM electrolysis-based hydrogen reactor and the potential for hydrogen production at Baron Beach, Gunung Kidul, Yogyakarta. Based on the calculation done at the initial process, the electrical energy potentially generated from renewable energy, such as wind, waves, and solar, reached 10.7 MW. This study also investigated the effect of reactor operating temperature on reactor efficiency and hydrogen production. A numerical thermodynamic approach was applied in the design process. The model, validated by laboratory experiments by other institutions, was in good agreement with previous research with an error value of 13%. The temperature range was dynamically limited from 30 to 80°C. The optimum operating conditions occurred when the temperature was set at 80 °C with a reactor efficiency, a water consumption rate, and a hydrogen production capacity of 76.3%, 2.817 kg/hour, and 250.42 kg/hour, respectively. The raw material, namely seawater, was processed using the reverse osmosis method. Ten reactors (with 13 cells per reactor) were installed in parallel.","PeriodicalId":120071,"journal":{"name":"Frontiers in Renewable Energy","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115402150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Prayitno, Okto Dinaryanto, Deendarlianto, Indarto
Sub-regimes of air-water slug flow in horizontal pipes have been characterized by a liquid hold-up model correlated to bubble behaviors (LHmBb). The LHmBB is composed of two sections which are the liquid hold-up model and bubble behavior investigations. The liquid hold-up model is developed based on the statistical analysis of the probability density function (PDF) to quantify the bubble distribution. The bubble behaviors are qualitatively investigated based on the high-speed camera and correlated to the quantified LH for the characterization of sub-regime of air-water slug flow. The LHmBB characterizes the sub-regime of air-water slug flow in a horizontal transparent acrylic pipe with an inner diameter of underwater and air superficial velocities of and, respectively. As a result, four sub-regimes are determined as Initially dispersed Bubbles (IdB), Low dispersed Bubbles (LdB), High dispersed Bubbles (HdB), and Dominantly dispersed Bubbles (DdB). The presence of bubbles determines the type of sub-regime by decreasing the number of bubbles and dispersing the bubbles mechanism. Moreover, the proposed LHmBb includes the correlation function to ease the prediction of the sub-regimes of air-water slug flow characteristics which leads to the enhancements of the two-phase flow pattern map in horizontal pipes.
{"title":"Sub-Regimes of Air-Water Slug Flow Characteristics in Horizontal Pipes by Liquid Hold-up Model Correlated to Bubble Behaviours (LHmBb)","authors":"Y. Prayitno, Okto Dinaryanto, Deendarlianto, Indarto","doi":"10.22146/free.v1i1.3472","DOIUrl":"https://doi.org/10.22146/free.v1i1.3472","url":null,"abstract":"Sub-regimes of air-water slug flow in horizontal pipes have been characterized by a liquid hold-up model correlated to bubble behaviors (LHmBb). The LHmBB is composed of two sections which are the liquid hold-up model and bubble behavior investigations. The liquid hold-up model is developed based on the statistical analysis of the probability density function (PDF) to quantify the bubble distribution. The bubble behaviors are qualitatively investigated based on the high-speed camera and correlated to the quantified LH for the characterization of sub-regime of air-water slug flow. The LHmBB characterizes the sub-regime of air-water slug flow in a horizontal transparent acrylic pipe with an inner diameter of underwater and air superficial velocities of and, respectively. As a result, four sub-regimes are determined as Initially dispersed Bubbles (IdB), Low dispersed Bubbles (LdB), High dispersed Bubbles (HdB), and Dominantly dispersed Bubbles (DdB). The presence of bubbles determines the type of sub-regime by decreasing the number of bubbles and dispersing the bubbles mechanism. Moreover, the proposed LHmBb includes the correlation function to ease the prediction of the sub-regimes of air-water slug flow characteristics which leads to the enhancements of the two-phase flow pattern map in horizontal pipes.","PeriodicalId":120071,"journal":{"name":"Frontiers in Renewable Energy","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127032998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Rozaq Albaqi, Nugroho Dewayanto, Eko Agus Suyono, Arief Budiman
Energy consumption of fossil fuel which keeps increasing has led to the urgency of research and development on the field of renewable energy for the future. Microalgae are considered to be the most promising new source of biomass compared with first and second-generation feedstocks. A great challenge is a choice of an effective approach for microalgae harvesting. Additional challenges of microalgae harvesting come from the small size of microalgae cells (3-30µm) and the similarity of the density of the microalgae cells to the growth medium. This research is aimed to determine the appropriate microalgae harvesting technology for bio-crude oil production. Several potential microalgae harvesting technologies are centrifugation, filtration, inorganic flocculation, organic flocculation, bioflocculation, electrocoagulation, and flocculation-sedimentation. The method used in this research is Analytic Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are energy need (0.339), cost (0.214), risk of contamination (0.098), efficiency (0.133), technology availability (0.066), microalgae strain flexibility (0.079), and production time (0.071). In a case study, the pairwise comparison of seven alternatives each for the harvesting and seven criteria are compared. The best alternative that can be recommended as a microalgae harvesting technology is flocculation-sedimentation with a weight of 0.202.
{"title":"Selection of Microalgae Harvesting Technology for Bio-crude Oil Production","authors":"Abdul Rozaq Albaqi, Nugroho Dewayanto, Eko Agus Suyono, Arief Budiman","doi":"10.22146/free.v1i1.3847","DOIUrl":"https://doi.org/10.22146/free.v1i1.3847","url":null,"abstract":"Energy consumption of fossil fuel which keeps increasing has led to the urgency of research and development on the field of renewable energy for the future. Microalgae are considered to be the most promising new source of biomass compared with first and second-generation feedstocks. A great challenge is a choice of an effective approach for microalgae harvesting. Additional challenges of microalgae harvesting come from the small size of microalgae cells (3-30µm) and the similarity of the density of the microalgae cells to the growth medium. This research is aimed to determine the appropriate microalgae harvesting technology for bio-crude oil production. Several potential microalgae harvesting technologies are centrifugation, filtration, inorganic flocculation, organic flocculation, bioflocculation, electrocoagulation, and flocculation-sedimentation. The method used in this research is Analytic Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are energy need (0.339), cost (0.214), risk of contamination (0.098), efficiency (0.133), technology availability (0.066), microalgae strain flexibility (0.079), and production time (0.071). In a case study, the pairwise comparison of seven alternatives each for the harvesting and seven criteria are compared. The best alternative that can be recommended as a microalgae harvesting technology is flocculation-sedimentation with a weight of 0.202.","PeriodicalId":120071,"journal":{"name":"Frontiers in Renewable Energy","volume":"215 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131093136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Budiman, Martomo Setyawan, Panut Mulyono, Sutijan, Razif Harun
Lipid extraction assisted by hydrodynamic cavitation (HCLE) is one of the promising processes with low energy requirements. This study aims to reduce the energy requirement using a discrete flow system and evaluate two models to calculate the volumetric mass transfer coefficient. The variations of the number of repetitions, cavitation number, microalgae concentration, and temperature have affected the energy requirement value. The first model uses total lipid mass transfer approximation (Model 1) and the second uses separated lipid mass transfer approximation (Model 2). Based on Model 1 the value of total volumetric mass transfer coefficient ( ) f were 1.166 x 10-2, 3.113 x 10-3 and 1.285 x 10-3 min-1 with coefficient of determination (R2) is 0.9797. Whereas, based on Model 2 the value of volumetric mass transfer coefficient from disrupted microalgae ( ) were 1.131 x 10-2, 2.925 x 10-3 and 1.260 x 10-3 min-1 and from the intact microalgae ( ) was 0.051, 0.030 and 0.011 1/min with R2 of 0.9766. Both models gave a similar result. It was shown that lipid release from disrupted microalgae was dominant compared to the intact microalgae. Therefore, the discrete flow system of HCLE is a promising technique for extracting lipids from microalgae
{"title":"Mathematical Modeling of Hydrodynamic Cavitation as Low Energy Extraction Technique for Lipid Removal from Nannochloropsis sp.","authors":"A. Budiman, Martomo Setyawan, Panut Mulyono, Sutijan, Razif Harun","doi":"10.22146/free.v1i1.3312","DOIUrl":"https://doi.org/10.22146/free.v1i1.3312","url":null,"abstract":"Lipid extraction assisted by hydrodynamic cavitation (HCLE) is one of the promising processes with low energy requirements. This study aims to reduce the energy requirement using a discrete flow system and evaluate two models to calculate the volumetric mass transfer coefficient. The variations of the number of repetitions, cavitation number, microalgae concentration, and temperature have affected the energy requirement value. The first model uses total lipid mass transfer approximation (Model 1) and the second uses separated lipid mass transfer approximation (Model 2). Based on Model 1 the value of total volumetric mass transfer coefficient ( ) f were 1.166 x 10-2, 3.113 x 10-3 and 1.285 x 10-3 min-1 with coefficient of determination (R2) is 0.9797. Whereas, based on Model 2 the value of volumetric mass transfer coefficient from disrupted microalgae ( ) were 1.131 x 10-2, 2.925 x 10-3 and 1.260 x 10-3 min-1 and from the intact microalgae ( ) was 0.051, 0.030 and 0.011 1/min with R2 of 0.9766. Both models gave a similar result. It was shown that lipid release from disrupted microalgae was dominant compared to the intact microalgae. Therefore, the discrete flow system of HCLE is a promising technique for extracting lipids from microalgae","PeriodicalId":120071,"journal":{"name":"Frontiers in Renewable Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131241354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}