首页 > 最新文献

International Conference on Video and Image Processing最新文献

英文 中文
A multi-focus image fusion method based on nested U-Net 一种基于嵌套U-Net的多焦点图像融合方法
Pub Date : 2021-12-22 DOI: 10.1145/3511176.3511188
Wangping Zhou, Yuanqing Wu, Hao Wu
Multi-focus image fusion is a popular research direction of image fusion, however, because of the complexity of the image, it has always been difficult in scientific research to accurately judge the clear area, especially in the clear and fuzzy edge of the complex environment. To better determine the focus area of the source image and obtain a clear image, the improved U2-Net model is used to analyze the focus area, and the multi-scale feature extraction scheme is used to generate the decision map. At the same time, the algorithm uses the NYU-D2 depth image as the training dataset in this paper. To achieve a better training effect, the method of image segmentation, Graph Cut, is combined with manual adjustment to make the training dataset. The experimental results show that comparedwith several existing latest algorithms, this fusionmethod can obtain accurate decision diagrams and has better performance in visual perception and objective evaluation.
多焦点图像融合是图像融合的一个热门研究方向,然而由于图像的复杂性,在科学研究中一直难以准确判断清晰区域,特别是在复杂环境的清晰和模糊边缘。为了更好地确定源图像的焦点区域并获得清晰的图像,采用改进的U2-Net模型对焦点区域进行分析,并采用多尺度特征提取方案生成决策图。同时,算法使用NYU-D2深度图像作为本文的训练数据集。为了达到更好的训练效果,将图像分割方法Graph Cut与人工调整相结合,制作训练数据集。实验结果表明,与现有的几种最新算法相比,该融合方法可以获得准确的决策图,并且在视觉感知和客观评价方面具有更好的性能。
{"title":"A multi-focus image fusion method based on nested U-Net","authors":"Wangping Zhou, Yuanqing Wu, Hao Wu","doi":"10.1145/3511176.3511188","DOIUrl":"https://doi.org/10.1145/3511176.3511188","url":null,"abstract":"Multi-focus image fusion is a popular research direction of image fusion, however, because of the complexity of the image, it has always been difficult in scientific research to accurately judge the clear area, especially in the clear and fuzzy edge of the complex environment. To better determine the focus area of the source image and obtain a clear image, the improved U2-Net model is used to analyze the focus area, and the multi-scale feature extraction scheme is used to generate the decision map. At the same time, the algorithm uses the NYU-D2 depth image as the training dataset in this paper. To achieve a better training effect, the method of image segmentation, Graph Cut, is combined with manual adjustment to make the training dataset. The experimental results show that comparedwith several existing latest algorithms, this fusionmethod can obtain accurate decision diagrams and has better performance in visual perception and objective evaluation.","PeriodicalId":120826,"journal":{"name":"International Conference on Video and Image Processing","volume":"222 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116174524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High-Frequency Feature Learning in Image Super-Resolution with Sub-Pixel Convolutional Neural Network 基于亚像素卷积神经网络的图像超分辨率高频特征学习
Pub Date : 1900-01-01 DOI: 10.1145/3376067.3376099
Xiao-Yuan Jiang, Xi-Hai Chen
Sub-pixel convolutional neural network is efficient for image super-resolution. However, the images generated are relatively smooth. Improving the learning ability of high-frequency features is of great significance for sub-pixel convolutional neural network to get better performance. In the paper, we propose an improved algorithm of sub-pixel convolutional neural network based on high-frequency feature learning for image super-resolution, it optimizes the traditional sub-pixel convolutional structure. Firstly we introduce a residual convolutional layer in the generation net. it assigns the residual factor to each sub-pixel feature map and forces each pixel feature map to adaptively use the input information. Furthermore, a method for high frequency feature mapping is proposed. During image super-resolution training stage, the multi-task learning function, combining the pixel-level loss function with high-frequency contrast loss function, make the generation images getting closer to the target super-resolution images in high-frequency domain. The experiments on CelebA dataset show that our proposed method can effectively improve the quality of super-resolution images by contrast to the traditional sub-pixel convolutional neural network.
{"title":"High-Frequency Feature Learning in Image Super-Resolution with Sub-Pixel Convolutional Neural Network","authors":"Xiao-Yuan Jiang, Xi-Hai Chen","doi":"10.1145/3376067.3376099","DOIUrl":"https://doi.org/10.1145/3376067.3376099","url":null,"abstract":"Sub-pixel convolutional neural network is efficient for image super-resolution. However, the images generated are relatively smooth. Improving the learning ability of high-frequency features is of great significance for sub-pixel convolutional neural network to get better performance. In the paper, we propose an improved algorithm of sub-pixel convolutional neural network based on high-frequency feature learning for image super-resolution, it optimizes the traditional sub-pixel convolutional structure. Firstly we introduce a residual convolutional layer in the generation net. it assigns the residual factor to each sub-pixel feature map and forces each pixel feature map to adaptively use the input information. Furthermore, a method for high frequency feature mapping is proposed. During image super-resolution training stage, the multi-task learning function, combining the pixel-level loss function with high-frequency contrast loss function, make the generation images getting closer to the target super-resolution images in high-frequency domain. The experiments on CelebA dataset show that our proposed method can effectively improve the quality of super-resolution images by contrast to the traditional sub-pixel convolutional neural network.","PeriodicalId":120826,"journal":{"name":"International Conference on Video and Image Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116358734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Non-convex Mixture Method for Low-rank Tensor Completion 一种高效的低秩张量补全的非凸混合方法
Pub Date : 1900-01-01 DOI: 10.1145/3301506.3301516
Chengfei Shi, Li Wan, Zhengdong Huang, Tifan Xiong
For the problem of low-rank tensor completion, rank estimation plays an extremely important role. And among some outstanding researches, nuclear norm is often used as a substitute of rank in the optimization due to its convex property. However, recent advances show that some non-convex functions could approximate the rank better, which can significantly improve the precision of the algorithm. While, the complexity of non-convex functions also lead to much higher computation cost, especially in handling large scale matrices from the mode-n unfolding of a tensor. This paper proposes a mixture model for tensor completion by combining logDet function with Tucker decomposition to achieve a better performance in precision and a lower cost in computation as well. In the implementation of the method, alternating direction method of multipliers (ADMM) is employed to obtain the optimal tensor completion. Experiments on image restoration are carried out to validate the effective and efficiency of the method.
{"title":"An Efficient Non-convex Mixture Method for Low-rank Tensor Completion","authors":"Chengfei Shi, Li Wan, Zhengdong Huang, Tifan Xiong","doi":"10.1145/3301506.3301516","DOIUrl":"https://doi.org/10.1145/3301506.3301516","url":null,"abstract":"For the problem of low-rank tensor completion, rank estimation plays an extremely important role. And among some outstanding researches, nuclear norm is often used as a substitute of rank in the optimization due to its convex property. However, recent advances show that some non-convex functions could approximate the rank better, which can significantly improve the precision of the algorithm. While, the complexity of non-convex functions also lead to much higher computation cost, especially in handling large scale matrices from the mode-n unfolding of a tensor. This paper proposes a mixture model for tensor completion by combining logDet function with Tucker decomposition to achieve a better performance in precision and a lower cost in computation as well. In the implementation of the method, alternating direction method of multipliers (ADMM) is employed to obtain the optimal tensor completion. Experiments on image restoration are carried out to validate the effective and efficiency of the method.","PeriodicalId":120826,"journal":{"name":"International Conference on Video and Image Processing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124635426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision-Based Analysis for Queue Characteristics and Lane Identification 基于视觉的队列特征分析与车道识别
Pub Date : 1900-01-01 DOI: 10.1145/3447450.3447474
C. G. V. Ya-On, Jonathan Paul C. Cempron, J. Ilao
This paper presents a vision-based approach to lane identification and estimation of service rate, arrival rate, and queue saturation. The method is based on analyzing object trajectories produced. Experiments are demonstrated by applying the proposed method to different traffic scenarios: light, moderate, and heavy. The accuracy of the test is examined by comparing the queue analysis results against the ground truth. Results show that the approach is able to yield satisfactory results when the vehicle movement stays within the lane. However, the error increases when vehicle movement overlaps or switches lanes. In conclusion, the algorithm works to identify the lane membership of trajectories under different conditions. The proposed method could also be used to automate the estimation of traffic congestion levels at sections covered by surveillance cameras.
{"title":"Vision-Based Analysis for Queue Characteristics and Lane Identification","authors":"C. G. V. Ya-On, Jonathan Paul C. Cempron, J. Ilao","doi":"10.1145/3447450.3447474","DOIUrl":"https://doi.org/10.1145/3447450.3447474","url":null,"abstract":"This paper presents a vision-based approach to lane identification and estimation of service rate, arrival rate, and queue saturation. The method is based on analyzing object trajectories produced. Experiments are demonstrated by applying the proposed method to different traffic scenarios: light, moderate, and heavy. The accuracy of the test is examined by comparing the queue analysis results against the ground truth. Results show that the approach is able to yield satisfactory results when the vehicle movement stays within the lane. However, the error increases when vehicle movement overlaps or switches lanes. In conclusion, the algorithm works to identify the lane membership of trajectories under different conditions. The proposed method could also be used to automate the estimation of traffic congestion levels at sections covered by surveillance cameras.","PeriodicalId":120826,"journal":{"name":"International Conference on Video and Image Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125590478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Vehicle Counting Using Detecting-Tracking Combinations: A Comparative Analysis 使用检测-跟踪组合的车辆计数:比较分析
Pub Date : 1900-01-01 DOI: 10.1145/3447450.3447458
Ala Alsanabani, Mohammed A. Ahmed, Ahmad Al Smadi
In light of the rapid progress in building smart cities and smart traffic systems, the need for an accurate and real-time counting vehicles system has become a very urgent need. Finding a robust and accurate counting system is a challenge, as the system must detect, classify and track multi vehicles in complex and dynamic scene situations, different models and classes, and various traffic densities. Several hardware and software systems have emerged for this purpose and their results have varied. In recent years, and due to the great growth in computational capacities and deep learning techniques, deep learning based vehicle counting systems have delivered an impressive performance at low costs. In this study, several state-of-the-art detection and tracking algorithms are studied and combined with each other to render different models. These models are applied in automatic vehicle counting frameworks in traffic videos to assess how accurate are their results against the ground truth. Experiments on these models present the existing challenges that hinder their ability to extract the distinctive object features and thus undermine their efficiency such as problems of occlusion, large scale objects detection, illumination, and various weather conditions. The study revealed that the detectors coupled with the Deep Sort tracker, such as YOLOv4, Detectron2 and CenterNet, achieved the best results compared to the rest of the models.
{"title":"Vehicle Counting Using Detecting-Tracking Combinations: A Comparative Analysis","authors":"Ala Alsanabani, Mohammed A. Ahmed, Ahmad Al Smadi","doi":"10.1145/3447450.3447458","DOIUrl":"https://doi.org/10.1145/3447450.3447458","url":null,"abstract":"In light of the rapid progress in building smart cities and smart traffic systems, the need for an accurate and real-time counting vehicles system has become a very urgent need. Finding a robust and accurate counting system is a challenge, as the system must detect, classify and track multi vehicles in complex and dynamic scene situations, different models and classes, and various traffic densities. Several hardware and software systems have emerged for this purpose and their results have varied. In recent years, and due to the great growth in computational capacities and deep learning techniques, deep learning based vehicle counting systems have delivered an impressive performance at low costs. In this study, several state-of-the-art detection and tracking algorithms are studied and combined with each other to render different models. These models are applied in automatic vehicle counting frameworks in traffic videos to assess how accurate are their results against the ground truth. Experiments on these models present the existing challenges that hinder their ability to extract the distinctive object features and thus undermine their efficiency such as problems of occlusion, large scale objects detection, illumination, and various weather conditions. The study revealed that the detectors coupled with the Deep Sort tracker, such as YOLOv4, Detectron2 and CenterNet, achieved the best results compared to the rest of the models.","PeriodicalId":120826,"journal":{"name":"International Conference on Video and Image Processing","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127665499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
International Conference on Video and Image Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1