首页 > 最新文献

arXiv: Emerging Technologies最新文献

英文 中文
Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange 随机电阻-随机温度Kirchhoff-law-Johnson-noise (RRRT-KLJN)密钥交换
Pub Date : 2015-09-01 DOI: 10.1515/mms-2016-0007
L. Kish, C. Granqvist
We introduce two new Kirchhoff-law-Johnson-noise (KLJN) secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR-) KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR-KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random-Resistor-Random-Temperature (RRRT-) KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT-KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN scheme can prevail at non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation-Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT-KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.
提出了两个新的Kirchhoff-law-Johnson-noise (KLJN)安全密钥分发方案,它们是对原KLJN方案的推广。其中第一种,随机电阻(RR-) KLJN方案,使用随机电阻,其值从准连续统集中选择。众所周知,自从KLJN概念的创建以来,这样的系统可以在密码学中工作,因为Alice和Bob可以从测量中计算未知的电阻值,但是RR-KLJN系统在以前的出版物中没有得到解决,因为它被认为是不切实际的。现在讨论它的原因是第二种方案,随机电阻随机温度(RRRT-) KLJN密钥交换,灵感来自Vadai, Mingesz和Gingl最近的一篇论文,其中安全性被证明在非零功率流下保持。在RRRT-KLJN安全密钥交换方案中,电阻和它们的温度都是连续随机变量。证明了RRRT-KLJN方案在非零潮流下的安全性是占优的,因此保证安全性的物理定律不是热力学第二定律,而是涨落耗散定理。Alice和Bob知道他们自己的电阻和温度,并且可以根据电线中测量的电压、电流和功率流数据计算通信通道另一端的电阻和温度值。然而,Eve无法确定这些值,因为对她来说,有四个未知量,而她只能建立三个方程。RRRT-KLJN方案有几个优点,使得以前针对KLJN方案的攻击都是无效或不完整的。
{"title":"Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange","authors":"L. Kish, C. Granqvist","doi":"10.1515/mms-2016-0007","DOIUrl":"https://doi.org/10.1515/mms-2016-0007","url":null,"abstract":"We introduce two new Kirchhoff-law-Johnson-noise (KLJN) secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR-) KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR-KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random-Resistor-Random-Temperature (RRRT-) KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT-KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN scheme can prevail at non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation-Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT-KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.","PeriodicalId":124480,"journal":{"name":"arXiv: Emerging Technologies","volume":"101 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120813340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
О сложности обратимых схем,состоящих из функциональных элементов NOT, CNOT и 2-CNOT@@@
Pub Date : 1900-01-01 DOI: 10.4213/DM1365
Дмитрий Владимирович Закаблуков, D. V. Zakablukov
The paper discusses the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The Shannon gate complexity function $L(n, q)$ for a reversible circuit, implementing a Boolean transformation $fcolon mathbb Z_2^n to mathbb Z_2^n$, is defined as a function of $n$ and the number of additional inputs $q$. The general lower bound $L(n,q) geq frac{2^n(n-2)}{3log_2(n+q)} - frac{n}{3}$ for the gate complexity of a reversible circuit is proved. An upper bound $L(n,0) leqslant 3n2^{n+4}(1+o(1)) mathop / log_2n$ for the gate complexity of a reversible circuit without additional inputs is proved. An upper bound $L(n,q_0) lesssim 2^n$ for the gate complexity of a reversible circuit with $q_0 sim n2^{n-o(n)}$ additional inputs is proved.
本文讨论了由NOT、CNOT和2-CNOT门组成的可逆电路的门复杂度。实现布尔变换$fcolon mathbb Z_2^n to mathbb Z_2^n$的可逆电路的香农门复杂度函数$L(n, q)$被定义为$n$和附加输入数$q$的函数。证明了可逆电路门复杂度的一般下界$L(n,q) geq frac{2^n(n-2)}{3log_2(n+q)} - frac{n}{3}$。证明了无附加输入可逆电路的门复杂度的上界$L(n,0) leqslant 3n2^{n+4}(1+o(1)) mathop / log_2n$。证明了具有$q_0 sim n2^{n-o(n)}$附加输入的可逆电路的门复杂度的上界$L(n,q_0) lesssim 2^n$。
{"title":"О сложности обратимых схем,состоящих из функциональных элементов NOT, CNOT и 2-CNOT@@@","authors":"Дмитрий Владимирович Закаблуков, D. V. Zakablukov","doi":"10.4213/DM1365","DOIUrl":"https://doi.org/10.4213/DM1365","url":null,"abstract":"The paper discusses the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The Shannon gate complexity function $L(n, q)$ for a reversible circuit, implementing a Boolean transformation $fcolon mathbb Z_2^n to mathbb Z_2^n$, is defined as a function of $n$ and the number of additional inputs $q$. The general lower bound $L(n,q) geq frac{2^n(n-2)}{3log_2(n+q)} - frac{n}{3}$ for the gate complexity of a reversible circuit is proved. An upper bound $L(n,0) leqslant 3n2^{n+4}(1+o(1)) mathop / log_2n$ for the gate complexity of a reversible circuit without additional inputs is proved. An upper bound $L(n,q_0) lesssim 2^n$ for the gate complexity of a reversible circuit with $q_0 sim n2^{n-o(n)}$ additional inputs is proved.","PeriodicalId":124480,"journal":{"name":"arXiv: Emerging Technologies","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122113762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
arXiv: Emerging Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1