Pub Date : 2019-01-23DOI: 10.5772/INTECHOPEN.78019
X. Dong
In this study, cold plasma at atmospheric pressure, as a novel approach of bioprocess intensification, was used to induce yeast for the improvement of ethanol production. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of cold plasma for the purpose of maximizing the ethanol yield achieved by cold plasma-treated S. cerevisiae. The resulting yield of ethanol reached to 0.48 g g−1 under optimized parameters of plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL, which represented an increase of 33% over control. Compared with non-exposed cells, cells exposed with plasma for 1 min presented a notable increment in cytoplasmic free Ca2+, when these exposed cells showed the significant increase in membrane potential. At the same time, ATP level decreased by about 40%, resulting in about 60% reduction in NADH. Taken together, these data suggested that the mechanism that air cold plasma raised plasma membrane potential, which led to increases in cytosolic Ca2+ concentration. Furthermore, the cofactor metabolism, such as ATP and NADH, was subjected to regulation that was mediated by Ca2+, ultimately improving yeast productivity. This may have a underlying and broad utilization in enhancing bioconversion capability of microbe in the next few years.
在本研究中,低温等离子体作为一种新的生物过程强化方法,用于诱导酵母提高乙醇产量。采用响应面法(RSM)对冷等离子体放电相关参数进行优化,以使冷等离子体处理酿酒酵母的乙醇产量最大化。在等离子体暴露时间为1 min、电源电压为26 V、暴露样品量为9 mL的优化条件下,乙醇得率达到0.48 g g−1,比对照提高了33%。与未暴露的细胞相比,暴露于血浆1min的细胞胞质游离Ca2+显著增加,膜电位显著升高。同时,ATP水平下降约40%,导致NADH降低约60%。综上所述,这些数据表明,空气冷等离子体提高质膜电位的机制,导致细胞质Ca2+浓度增加。此外,辅助因子代谢,如ATP和NADH,受到Ca2+介导的调节,最终提高酵母产量。这在提高微生物的生物转化能力方面具有潜在和广泛的应用前景。
{"title":"Enhanced Ethanol Production of Saccharomyces cerevisiae Induced by Cold Plasma at Atmospheric Air Pressure","authors":"X. Dong","doi":"10.5772/INTECHOPEN.78019","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78019","url":null,"abstract":"In this study, cold plasma at atmospheric pressure, as a novel approach of bioprocess intensification, was used to induce yeast for the improvement of ethanol production. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of cold plasma for the purpose of maximizing the ethanol yield achieved by cold plasma-treated S. cerevisiae. The resulting yield of ethanol reached to 0.48 g g−1 under optimized parameters of plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL, which represented an increase of 33% over control. Compared with non-exposed cells, cells exposed with plasma for 1 min presented a notable increment in cytoplasmic free Ca2+, when these exposed cells showed the significant increase in membrane potential. At the same time, ATP level decreased by about 40%, resulting in about 60% reduction in NADH. Taken together, these data suggested that the mechanism that air cold plasma raised plasma membrane potential, which led to increases in cytosolic Ca2+ concentration. Furthermore, the cofactor metabolism, such as ATP and NADH, was subjected to regulation that was mediated by Ca2+, ultimately improving yeast productivity. This may have a underlying and broad utilization in enhancing bioconversion capability of microbe in the next few years.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77403275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.81656
S. Sabiha-Hanim, Nurul Asyikin Abd Halim
Lignocellulosic biomass such as sugarcane bagasse (SCB) is a renewable and abundant source for ethanol production. Sugarcane bagasse is composed of cellulose, hemicellulose, lignin, extractives, and several inorganic materials. Pretreatment methods of SCB are necessary for the successful conversion of SCB to ethanol. Each pretreatment process has a specific effect on the cellulose, hemicellulose, and lignin fraction. The conversion of SCB to ethanol typically consists of four main steps: pretreatment, enzymatic hydrolysis, fermentation, and distillation. Hence, different pretreatment methods should be chosen according to the process design for the following hydrolysis, fermentation, and distillation steps. There are many types of pretreatments such as physical, chemical, physico-chemical, and biological pretreatments. This chapter reviews the chemical and physico-chemical pretreatment methods of SCB which are often used by many research- ers for ethanol production. Different chemical and physico-chemical pretreatment meth ods of SCB are introduced and discussed based on relevance to the sugar yield, lignin removal, and cellulose content after pretreatment.
{"title":"Sugarcane Bagasse Pretreatment Methods for Ethanol Production","authors":"S. Sabiha-Hanim, Nurul Asyikin Abd Halim","doi":"10.5772/INTECHOPEN.81656","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81656","url":null,"abstract":"Lignocellulosic biomass such as sugarcane bagasse (SCB) is a renewable and abundant source for ethanol production. Sugarcane bagasse is composed of cellulose, hemicellulose, lignin, extractives, and several inorganic materials. Pretreatment methods of SCB are necessary for the successful conversion of SCB to ethanol. Each pretreatment process has a specific effect on the cellulose, hemicellulose, and lignin fraction. The conversion of SCB to ethanol typically consists of four main steps: pretreatment, enzymatic hydrolysis, fermentation, and distillation. Hence, different pretreatment methods should be chosen according to the process design for the following hydrolysis, fermentation, and distillation steps. There are many types of pretreatments such as physical, chemical, physico-chemical, and biological pretreatments. This chapter reviews the chemical and physico-chemical pretreatment methods of SCB which are often used by many research- ers for ethanol production. Different chemical and physico-chemical pretreatment meth ods of SCB are introduced and discussed based on relevance to the sugar yield, lignin removal, and cellulose content after pretreatment.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"106 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77811130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.78712
Ane Catarine Tosi-Costa, Cárita Turbay-Vasconcelos, L. Adami, L. Favarato, Maria Bolivar-Telleria, Tarcio Carneiro, AlexandreSantos, Alberto R. Fernandes, Patricia M. B. Fernandes
The use of high hydrostatic pressure (HHP) is an interesting approach to optimize the production of both firstand second-generation ethanol. It may be applied on Saccharomyces cerevisiae cells to enhance the fermentation pathway and on the lignocellulosic biomass to increase sugar release. HHP has a wide effect on many biological processes, such as growth, division and cellular viability. Actually, conformation, stability, polymerization and depolymerization of proteins are affected by HHP as well as lipid packaging. Moreover, transcriptional profile analysis indicates an activation of the general stress response. In yeast, HHP higher than 100 MPa leads to significant morphological and physiological alteration, and loss of cellular viability occurs over 200 MPa. A yield rate increase in ethanol production occurs at pressures of 10–50 MPa, but over 87 MPa alcoholic fermentation is interrupted.
{"title":"High Hydrostatic Pressure Process to Improve Ethanol Production","authors":"Ane Catarine Tosi-Costa, Cárita Turbay-Vasconcelos, L. Adami, L. Favarato, Maria Bolivar-Telleria, Tarcio Carneiro, AlexandreSantos, Alberto R. Fernandes, Patricia M. B. Fernandes","doi":"10.5772/INTECHOPEN.78712","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78712","url":null,"abstract":"The use of high hydrostatic pressure (HHP) is an interesting approach to optimize the production of both firstand second-generation ethanol. It may be applied on Saccharomyces cerevisiae cells to enhance the fermentation pathway and on the lignocellulosic biomass to increase sugar release. HHP has a wide effect on many biological processes, such as growth, division and cellular viability. Actually, conformation, stability, polymerization and depolymerization of proteins are affected by HHP as well as lipid packaging. Moreover, transcriptional profile analysis indicates an activation of the general stress response. In yeast, HHP higher than 100 MPa leads to significant morphological and physiological alteration, and loss of cellular viability occurs over 200 MPa. A yield rate increase in ethanol production occurs at pressures of 10–50 MPa, but over 87 MPa alcoholic fermentation is interrupted.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85545040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.78413
T. O. Basso, F. Lino
Brazilian fuel ethanol production from sugarcane is one of the largest industrial biotech- nological processes in the world. However, in view of the complex chemical nature of this feedstock, as well as the non-aseptic conditions of the process, various stress conditions are imposed to the fermenting yeast. In this chapter, we deemed to elaborate a brief overview of the ethanol production process, and to dissect the chemical nature of sugarcane-based worts, as well as their physiological effects on the fermenting yeasts. Finally, the interplay between yeast and lactic acid bacteria, the two main players in the ethanol fermentation process, is generally discussed.
{"title":"Clash of Kingdoms: How Do Bacterial Contaminants Thrive in and Interact with Yeasts during Ethanol Production?","authors":"T. O. Basso, F. Lino","doi":"10.5772/INTECHOPEN.78413","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78413","url":null,"abstract":"Brazilian fuel ethanol production from sugarcane is one of the largest industrial biotech- nological processes in the world. However, in view of the complex chemical nature of this feedstock, as well as the non-aseptic conditions of the process, various stress conditions are imposed to the fermenting yeast. In this chapter, we deemed to elaborate a brief overview of the ethanol production process, and to dissect the chemical nature of sugarcane-based worts, as well as their physiological effects on the fermenting yeasts. Finally, the interplay between yeast and lactic acid bacteria, the two main players in the ethanol fermentation process, is generally discussed.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73571579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.77271
J. Pembroke, Patricia Armshaw, M. P. Ryan
Photoautotrophic ethanol production using model cyanobacteria is an attractive technol - ogy that offers potential for sustainable ethanol production as a biofuel. Model strains of Synechocystis PCC6803 have been metabolically engineered to convert central meta bolic intermediates such as pyruvate to acetaldehyde via cloned heterologous pyruvate decarboxylase and from acetaldehyde to ethanol via cloned homologous or heterologous alcohol dehydrogenase. While the technology is now proven, strategies are required to increase the ethanol levels through metabolic and genetic engineering and in addition, production and process strategies are required to make the process sustainable. Here we discuss both genetic and molecular strategies in combination with do wnstream strate gies that are being applied while also discussing challenges to future application.
{"title":"Metabolic Engineering of the Model Photoautotrophic Cyanobacterium Synechocystis for Ethanol Production: Optimization Strategies and Challenges","authors":"J. Pembroke, Patricia Armshaw, M. P. Ryan","doi":"10.5772/INTECHOPEN.77271","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77271","url":null,"abstract":"Photoautotrophic ethanol production using model cyanobacteria is an attractive technol - ogy that offers potential for sustainable ethanol production as a biofuel. Model strains of Synechocystis PCC6803 have been metabolically engineered to convert central meta bolic intermediates such as pyruvate to acetaldehyde via cloned heterologous pyruvate decarboxylase and from acetaldehyde to ethanol via cloned homologous or heterologous alcohol dehydrogenase. While the technology is now proven, strategies are required to increase the ethanol levels through metabolic and genetic engineering and in addition, production and process strategies are required to make the process sustainable. Here we discuss both genetic and molecular strategies in combination with do wnstream strate gies that are being applied while also discussing challenges to future application.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81434157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.77507
S. Premjet
Lignocellulosic biomass from weedy plants represents a potential alternative feedstock for economic production of bioethanol. Large numbers of weedy plant species are growing all over the world. Characteristics such as high dry matter yield, low water and nutrient requirements for growth, and cellulose contents make weedy plants very attractive as feedstock for bioethanol production. However, like other lignocellulosic feedstock, the complex structure presents resistance and recalcitrance to processes of conversion to bioethanol. Several weedy plants have been studied to determine their physical characteristics and suitability for bioethanol production. Different conversion techniques have been employed to increase monomer sugars and hence bioethanol yield. This chapter discusses processes and current research activities in bioconversion of weed biomass to bioethanol.
{"title":"Potential of Weed Biomass for Bioethanol Production","authors":"S. Premjet","doi":"10.5772/INTECHOPEN.77507","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77507","url":null,"abstract":"Lignocellulosic biomass from weedy plants represents a potential alternative feedstock for economic production of bioethanol. Large numbers of weedy plant species are growing all over the world. Characteristics such as high dry matter yield, low water and nutrient requirements for growth, and cellulose contents make weedy plants very attractive as feedstock for bioethanol production. However, like other lignocellulosic feedstock, the complex structure presents resistance and recalcitrance to processes of conversion to bioethanol. Several weedy plants have been studied to determine their physical characteristics and suitability for bioethanol production. Different conversion techniques have been employed to increase monomer sugars and hence bioethanol yield. This chapter discusses processes and current research activities in bioconversion of weed biomass to bioethanol.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86457040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.79649
E. C. Bensah, M. Mensah
A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods—physical, chemical, physico-chemical, biological and various combinations thereof. The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others. This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics.
{"title":"Emerging Physico-Chemical Methods for Biomass Pretreatment","authors":"E. C. Bensah, M. Mensah","doi":"10.5772/INTECHOPEN.79649","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79649","url":null,"abstract":"A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods—physical, chemical, physico-chemical, biological and various combinations thereof. The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others. This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86489219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.79144
Tomoyuki Kosaka, N. Lertwattanasakul, NadchanokRodrussamee, M. Nurcholis, N. Dung, Chansom Keo-oudone, M. Murata, P. Götz, ConstantinosTheodoropoulos, Suprayogi, J. M. Maligan, S. Limtong, M. Yamada
Thermotolerant ethanologenic yeasts receive attention as alternative bio-ethanol producers to traditionally used yeast, Saccharomyces cerevisiae. Their utilization is expected to provide several benefits for bio-ethanol production due to their characteristics and robustness. They have been isolated from a wide variety of environments in a number of ASEAN countries: Thailand, Vietnam, Laos, and Indonesia. One of these yeasts, Kluyveromyces marxianus has been investigated regarding characteristics. Some strains efficiently utilize xylose, which is a main component of the 2nd generation biomass. In addition, the genetic basis of K. marxianus has been revealed by genomic sequencing and is exploited for further improvement of the strains by thermal adaptation or gene engineering techniques. Moreover, the glucose repression of K. marxianus and its mechanisms has been investigated. Results suggest that K. marxianus is an alternative to S. cerevisiae in next-generation bio-ethanol production industry. Indeed, we have succeeded to apply K. marxianus for bio-ethanol production in a newly developed process, which combines high-temperature fermentation with simultaneous fermentation and distillation under low pressure. This chapter aims to provide valuable information on thermotolerant ethanologenic yeasts and their application, which may direct the economic bioproduction of ethanol and other useful materials in the future.
{"title":"Potential of Thermotolerant Ethanologenic Yeasts Isolated from ASEAN Countries and Their Application in High- Temperature Fermentation","authors":"Tomoyuki Kosaka, N. Lertwattanasakul, NadchanokRodrussamee, M. Nurcholis, N. Dung, Chansom Keo-oudone, M. Murata, P. Götz, ConstantinosTheodoropoulos, Suprayogi, J. M. Maligan, S. Limtong, M. Yamada","doi":"10.5772/INTECHOPEN.79144","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79144","url":null,"abstract":"Thermotolerant ethanologenic yeasts receive attention as alternative bio-ethanol producers to traditionally used yeast, Saccharomyces cerevisiae. Their utilization is expected to provide several benefits for bio-ethanol production due to their characteristics and robustness. They have been isolated from a wide variety of environments in a number of ASEAN countries: Thailand, Vietnam, Laos, and Indonesia. One of these yeasts, Kluyveromyces marxianus has been investigated regarding characteristics. Some strains efficiently utilize xylose, which is a main component of the 2nd generation biomass. In addition, the genetic basis of K. marxianus has been revealed by genomic sequencing and is exploited for further improvement of the strains by thermal adaptation or gene engineering techniques. Moreover, the glucose repression of K. marxianus and its mechanisms has been investigated. Results suggest that K. marxianus is an alternative to S. cerevisiae in next-generation bio-ethanol production industry. Indeed, we have succeeded to apply K. marxianus for bio-ethanol production in a newly developed process, which combines high-temperature fermentation with simultaneous fermentation and distillation under low pressure. This chapter aims to provide valuable information on thermotolerant ethanologenic yeasts and their application, which may direct the economic bioproduction of ethanol and other useful materials in the future.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83117995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.78020
S. Scully, Johann Orlygsson
Thermophilic bacteria have gained increased attention as prospective organisms for bioethanol production from lignocellulosic biomass due to their broad substrate spec tra including many of the hexoses pentoses, and disaccharides found in biomass and biomass hydrolysates, fast growth rates, and high tolerance for extreme cultivation con -ditions. Apart from optimizing the ethanol production by varying physiological param - eters, genetic engineering methods have been applied. This review focuses upon those thermophilic anaerobes recognized as being highly ethanologenic, their metabolism, and the importance of various culture parameters affecting ethanol yields, such as the partial pressure of hydrogen, pH, substrate inhibition, and ethanol tolerance. Also, recent devel - opments in evolutionary adaptation and genetic engineering of thermophilic anaerobes are addressed.
{"title":"Progress in Second Generation Ethanol Production with Thermophilic Bacteria","authors":"S. Scully, Johann Orlygsson","doi":"10.5772/INTECHOPEN.78020","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78020","url":null,"abstract":"Thermophilic bacteria have gained increased attention as prospective organisms for bioethanol production from lignocellulosic biomass due to their broad substrate spec tra including many of the hexoses pentoses, and disaccharides found in biomass and biomass hydrolysates, fast growth rates, and high tolerance for extreme cultivation con -ditions. Apart from optimizing the ethanol production by varying physiological param - eters, genetic engineering methods have been applied. This review focuses upon those thermophilic anaerobes recognized as being highly ethanologenic, their metabolism, and the importance of various culture parameters affecting ethanol yields, such as the partial pressure of hydrogen, pH, substrate inhibition, and ethanol tolerance. Also, recent devel - opments in evolutionary adaptation and genetic engineering of thermophilic anaerobes are addressed.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80397028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.78301
R. E. N. Castro, Rita M. B. Alves, C. Nascimento, R. Giudici
This chapter aims to explain how bio-ethanol has been drawn to become a successful alternative to partially replace petroleum as a source of liquid fuels in Brazil. A brief historical analysis about the production of bio-ethanol from sugarcane is presented. The motivation to start the production of the ethanol as biofuel in the 1970s and how the governmental policies have contributed to the ups and downs, successes, and failures of the sugarcane industry is shown. Then, the efficiency of the sector is addressed; firstly, the increasing efficiency of the agricultural sector is discussed, showing how the productivity per hectare has increased in the last decades and which improvements are further expected in a near future. Finally, the industrial process is discussed: the current efficiency in processing sugarcane to produce ethanol and the emerging technologies, not only to process sugarcane juice, but also to harness bagasse, vinasse, and sugarcane straw.
{"title":"Assessment of Sugarcane-Based Ethanol Production","authors":"R. E. N. Castro, Rita M. B. Alves, C. Nascimento, R. Giudici","doi":"10.5772/INTECHOPEN.78301","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78301","url":null,"abstract":"This chapter aims to explain how bio-ethanol has been drawn to become a successful alternative to partially replace petroleum as a source of liquid fuels in Brazil. A brief historical analysis about the production of bio-ethanol from sugarcane is presented. The motivation to start the production of the ethanol as biofuel in the 1970s and how the governmental policies have contributed to the ups and downs, successes, and failures of the sugarcane industry is shown. Then, the efficiency of the sector is addressed; firstly, the increasing efficiency of the agricultural sector is discussed, showing how the productivity per hectare has increased in the last decades and which improvements are further expected in a near future. Finally, the industrial process is discussed: the current efficiency in processing sugarcane to produce ethanol and the emerging technologies, not only to process sugarcane juice, but also to harness bagasse, vinasse, and sugarcane straw.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81526146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}