Pub Date : 2022-01-13DOI: 10.5772/intechopen.101831
S. Siddiqui, N. Ahmed, Neeraj Phogat
Potato is among the widely grown crop of the world. It is likely that a large portion of the crop is consumed fresh but majority of it is processed into various products, starch being the predominant one. Starch can greatly contribute to the textural properties of many foods and is widely used in food industry as raw material. Since raw potatoes are perishable and accessible only for few months of the year, the food and starch industry has to rely on stored potatoes during off-season. The various varieties of the crop available in the region, storage conditions, pre and post-storage treatments given to the tubers, packaging materials used, etc. are influencing the physical, chemical and functional characteristics of starch extracted from it. The extraction technology from tubers is also having a significant effect on the quality of starch. The knowledge of physical, chemical and functional characteristics of potato starch as affected by varieties, storage treatments and conditions of tubers will help in ensuring uniform and desirable quality of starch for food industry and also provide information for breeding programs and developing the proper postharvest management practices of potatoes.
{"title":"Potato Starch as Affected by Varieties, Storage Treatments and Conditions of Tubers","authors":"S. Siddiqui, N. Ahmed, Neeraj Phogat","doi":"10.5772/intechopen.101831","DOIUrl":"https://doi.org/10.5772/intechopen.101831","url":null,"abstract":"Potato is among the widely grown crop of the world. It is likely that a large portion of the crop is consumed fresh but majority of it is processed into various products, starch being the predominant one. Starch can greatly contribute to the textural properties of many foods and is widely used in food industry as raw material. Since raw potatoes are perishable and accessible only for few months of the year, the food and starch industry has to rely on stored potatoes during off-season. The various varieties of the crop available in the region, storage conditions, pre and post-storage treatments given to the tubers, packaging materials used, etc. are influencing the physical, chemical and functional characteristics of starch extracted from it. The extraction technology from tubers is also having a significant effect on the quality of starch. The knowledge of physical, chemical and functional characteristics of potato starch as affected by varieties, storage treatments and conditions of tubers will help in ensuring uniform and desirable quality of starch for food industry and also provide information for breeding programs and developing the proper postharvest management practices of potatoes.","PeriodicalId":125851,"journal":{"name":"Starch - Evolution and Recent Advances [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116315163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-13DOI: 10.5772/intechopen.101833
V. Krishnan, M. Awana, Debarati Mondal, P. Verma, Anuradha Singh, S. Praveen
Limiting starch bioavailability by modifying food matrix dynamics has evolved over the decade, which further envisions low glycemic starch prototypes to tackle chronic hyperglycemia. The dense matrix of whole grain foods like millets and cereals act as a suitable model to understand the dynamics of binary food matrix interactions between starch-lipid, starch-protein & starch-fiber. The state and types of matrix component (lipid/protein/fiber) which interact at various scales alters the starch micro configuration and limits the digestibility, but the mechanism is largely been ignored. Various in-vitro and in-vivo studies have deciphered the varied dimensions of physical interactions through depletion or augmentation studies to correlate towards a natural matrix and its low glycemic nature. The current chapter briefly encompasses the concept of food matrix types and binary interactions in mediating the glycemic amplitude of starch. We comprehensively elaborated and conceptually explained various approaches, which investigated the role of food matrices as complex real food systems or as fundamental approaches to defining the mechanisms. It’s a fact that multiple food matrix interaction studies at a time are difficult but it’s critical to understand the molecular interaction of matrix components to correlate in-vivo processes, which will assist in designing novel food prototypes in the future.
{"title":"Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response","authors":"V. Krishnan, M. Awana, Debarati Mondal, P. Verma, Anuradha Singh, S. Praveen","doi":"10.5772/intechopen.101833","DOIUrl":"https://doi.org/10.5772/intechopen.101833","url":null,"abstract":"Limiting starch bioavailability by modifying food matrix dynamics has evolved over the decade, which further envisions low glycemic starch prototypes to tackle chronic hyperglycemia. The dense matrix of whole grain foods like millets and cereals act as a suitable model to understand the dynamics of binary food matrix interactions between starch-lipid, starch-protein & starch-fiber. The state and types of matrix component (lipid/protein/fiber) which interact at various scales alters the starch micro configuration and limits the digestibility, but the mechanism is largely been ignored. Various in-vitro and in-vivo studies have deciphered the varied dimensions of physical interactions through depletion or augmentation studies to correlate towards a natural matrix and its low glycemic nature. The current chapter briefly encompasses the concept of food matrix types and binary interactions in mediating the glycemic amplitude of starch. We comprehensively elaborated and conceptually explained various approaches, which investigated the role of food matrices as complex real food systems or as fundamental approaches to defining the mechanisms. It’s a fact that multiple food matrix interaction studies at a time are difficult but it’s critical to understand the molecular interaction of matrix components to correlate in-vivo processes, which will assist in designing novel food prototypes in the future.","PeriodicalId":125851,"journal":{"name":"Starch - Evolution and Recent Advances [Working Title]","volume":"85 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120852962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-30DOI: 10.5772/intechopen.101697
A. Gamage, Thiviya Punniamoorthy, T. Madhujith
Environmental pollution is becoming a major global issue with increasing anthropogenic activities that release massive toxic pollutants into the land, air, and water. Nanomaterials have gained the most popularity in the last decades over conventional methods because of their high surface area to volume ratio and higher reactivity. Nanomaterials including metal, metal oxide, zero-valent ions, carbonaceous nanomaterials, and polymers function as adsorbents, catalysts, photocatalysts, membrane (filtration), disinfectants, and sensors in the detection and removal of various pollutants such as heavy metals, organic pollutants, dyes, industrial effluents, and pathogenic microbial. Polymer-inorganic hybrid materials or nanocomposites are highly studied for the removal of various contaminants. Starch, a heteropolysaccharide, is a natural biopolymer generally incorporated with other metal, metal oxide, and other polymeric nanoparticles and has been reported in various environmental remediation applications as a low-cost alternative for petroleum-based polymers. Therefore, this chapter mainly highlights the various nanomaterials used in environmental remediation, starch-based hybrid nanomaterials, and their application and limitations.
{"title":"Starch-Based Hybrid Nanomaterials for Environmental Remediation","authors":"A. Gamage, Thiviya Punniamoorthy, T. Madhujith","doi":"10.5772/intechopen.101697","DOIUrl":"https://doi.org/10.5772/intechopen.101697","url":null,"abstract":"Environmental pollution is becoming a major global issue with increasing anthropogenic activities that release massive toxic pollutants into the land, air, and water. Nanomaterials have gained the most popularity in the last decades over conventional methods because of their high surface area to volume ratio and higher reactivity. Nanomaterials including metal, metal oxide, zero-valent ions, carbonaceous nanomaterials, and polymers function as adsorbents, catalysts, photocatalysts, membrane (filtration), disinfectants, and sensors in the detection and removal of various pollutants such as heavy metals, organic pollutants, dyes, industrial effluents, and pathogenic microbial. Polymer-inorganic hybrid materials or nanocomposites are highly studied for the removal of various contaminants. Starch, a heteropolysaccharide, is a natural biopolymer generally incorporated with other metal, metal oxide, and other polymeric nanoparticles and has been reported in various environmental remediation applications as a low-cost alternative for petroleum-based polymers. Therefore, this chapter mainly highlights the various nanomaterials used in environmental remediation, starch-based hybrid nanomaterials, and their application and limitations.","PeriodicalId":125851,"journal":{"name":"Starch - Evolution and Recent Advances [Working Title]","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121248594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.5772/intechopen.101558
Revati Wanikar, S. Kotwal
Nowadays dietary starches are considered as a tool for maintaining good health. Recently resistant starch has received much attention because of its specific contribution to human health. Resistant starch escapes digestion in the small intestine and fermented in the colon by colonic microorganisms. Resistant starch has wide applications in varieties of food products. In the present study, types of resistant starch, their sources, physiological benefits, have been discussed briefly. This chapter focuses on factors affecting starch digestion, resistant starch content, characterization of resistant starch and various techniques employed to study their structural features.
{"title":"Resistant Starch: A Promising Functional Food Ingredient","authors":"Revati Wanikar, S. Kotwal","doi":"10.5772/intechopen.101558","DOIUrl":"https://doi.org/10.5772/intechopen.101558","url":null,"abstract":"Nowadays dietary starches are considered as a tool for maintaining good health. Recently resistant starch has received much attention because of its specific contribution to human health. Resistant starch escapes digestion in the small intestine and fermented in the colon by colonic microorganisms. Resistant starch has wide applications in varieties of food products. In the present study, types of resistant starch, their sources, physiological benefits, have been discussed briefly. This chapter focuses on factors affecting starch digestion, resistant starch content, characterization of resistant starch and various techniques employed to study their structural features.","PeriodicalId":125851,"journal":{"name":"Starch - Evolution and Recent Advances [Working Title]","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114810969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-16DOI: 10.5772/intechopen.101150
Verónica Cuellar Sánchez, Marcela González Vázquez, Alitzel B. García-Hernández, Fátima S. Serrano-Villa, Ma. de la Paz Salgado Cruz, A. García Bórquez, E. Morales‐Sánchez, Reynold R. Farrera-Rebollo, G. Calderón‐Domínguez
The use of particles obtained from biopolymers is of interest in fields such as bioengineering and nanotechnology, with applications in drug encapsulation, tissue engineering, and edible biofilms. A method used to obtain these particles is electrohydrodynamic atomization (EHDA), which can generate different structures depending on the process conditions and raw materials used, opening a wide range of research in the biopolymers field, where starch is considered an excellent material to produce edible and biodegradable films. This chapter is a compilation and analysis of the newest studies of this technique, using starch with or without modifications to prepare films or membranes and their potential applications. A systematic literature review, focused on starch, and EHDA was carried out, finding 158 articles that match these criteria. From these results, a search inside them, using the words edible and biodegradable was conducted, showing 93 articles with these key words. The information was analyzed observing the preference to use corn, potato, rice, and cassava starches, obtaining mainly scaffolds and fibers and, in much less proportion, films or capsules. This review shows a window of opportunity for the study of starchy materials by EHDA to produce films, coatings, and capsules at micro or nano levels.
{"title":"Starch Biodegradable Films Produced by Electrospraying","authors":"Verónica Cuellar Sánchez, Marcela González Vázquez, Alitzel B. García-Hernández, Fátima S. Serrano-Villa, Ma. de la Paz Salgado Cruz, A. García Bórquez, E. Morales‐Sánchez, Reynold R. Farrera-Rebollo, G. Calderón‐Domínguez","doi":"10.5772/intechopen.101150","DOIUrl":"https://doi.org/10.5772/intechopen.101150","url":null,"abstract":"The use of particles obtained from biopolymers is of interest in fields such as bioengineering and nanotechnology, with applications in drug encapsulation, tissue engineering, and edible biofilms. A method used to obtain these particles is electrohydrodynamic atomization (EHDA), which can generate different structures depending on the process conditions and raw materials used, opening a wide range of research in the biopolymers field, where starch is considered an excellent material to produce edible and biodegradable films. This chapter is a compilation and analysis of the newest studies of this technique, using starch with or without modifications to prepare films or membranes and their potential applications. A systematic literature review, focused on starch, and EHDA was carried out, finding 158 articles that match these criteria. From these results, a search inside them, using the words edible and biodegradable was conducted, showing 93 articles with these key words. The information was analyzed observing the preference to use corn, potato, rice, and cassava starches, obtaining mainly scaffolds and fibers and, in much less proportion, films or capsules. This review shows a window of opportunity for the study of starchy materials by EHDA to produce films, coatings, and capsules at micro or nano levels.","PeriodicalId":125851,"journal":{"name":"Starch - Evolution and Recent Advances [Working Title]","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126858423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}