首页 > 最新文献

Geometry of Black Holes最新文献

英文 中文
Basic notions 基本概念
Pub Date : 2020-08-25 DOI: 10.1093/oso/9780198855415.003.0001
P. Chruściel
The aim of this chapter is to set the ground for the remainder of this work. We present our conventions and notations in Section 1.1. We review some basic facts about the topology of manifolds in Section 1.2. Lorentzian manifolds and spacetimes are introduced in Section 1.3. Elementary facts concerning the Levi-Civita connection and its curvature are reviewed in Section 1.4. Some properties of geodesics, as needed in the remainder of this book, are presented in Section 1.5. The formalism of moving frames is outlined in Section 1.6, where it is used to calculate the curvature of metrics of interest.
本章的目的是为接下来的工作奠定基础。我们将在1.1节中介绍约定和符号。在1.2节中,我们回顾了关于流形拓扑的一些基本事实。洛伦兹流形和时空将在1.3节中介绍。关于列维-奇维塔联系及其曲率的基本事实将在1.4节中进行回顾。测地线的一些性质,在本书的其余部分需要,在第1.5节给出。在第1.6节中概述了移动帧的形式,其中它用于计算感兴趣的度量的曲率。
{"title":"Basic notions","authors":"P. Chruściel","doi":"10.1093/oso/9780198855415.003.0001","DOIUrl":"https://doi.org/10.1093/oso/9780198855415.003.0001","url":null,"abstract":"The aim of this chapter is to set the ground for the remainder of this work. We present our conventions and notations in Section 1.1. We review some basic facts about the topology of manifolds in Section 1.2. Lorentzian manifolds and spacetimes are introduced in Section 1.3. Elementary facts concerning the Levi-Civita connection and its curvature are reviewed in Section 1.4. Some properties of geodesics, as needed in the remainder of this book, are presented in Section 1.5. The formalism of moving frames is outlined in Section 1.6, where it is used to calculate the curvature of metrics of interest.","PeriodicalId":129765,"journal":{"name":"Geometry of Black Holes","volume":"131 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120888472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some applications 一些应用程序
Pub Date : 2020-08-25 DOI: 10.1093/oso/9780198855415.003.0003
P. Chruściel
The aim of this chapter is to present key applications of causality theory, as relevant to black-hole spacetimes. For this we need to introduce the concept of conformal completions, which is done in Section 3.1. We continue, in Section 3.2, with a review of the null splitting theorem of Galloway. Section 3.3 contains complete proofs of a few versions of the topological censorship theorems, which are otherwise scattered across the literature, and which play a basic role in understanding the topology of black holes. In Section 3.4 we review some key incompleteness theorems, also known under the name of singularity theorems. Section 3.5 is devoted to the presentation of a few versions of the area theorem, which is a cornerstones of ‘black-hole thermodynamics’. We close this chapter with a short discussion of the role played by causality theory when studying the wave equation.
本章的目的是介绍与黑洞时空相关的因果关系理论的关键应用。为此,我们需要引入保角补全的概念,这将在第3.1节中介绍。在第3.2节中,我们继续回顾加洛韦的零分裂定理。第3.3节包含了几个版本的拓扑审查定理的完整证明,这些定理分散在文献中,它们在理解黑洞的拓扑中起着基本的作用。在3.4节中,我们将回顾一些关键的不完备定理,它们也被称为奇点定理。第3.5节专门介绍了几个版本的面积定理,它是“黑洞热力学”的基石。在本章的最后,我们简短地讨论了因果关系理论在研究波动方程时所起的作用。
{"title":"Some applications","authors":"P. Chruściel","doi":"10.1093/oso/9780198855415.003.0003","DOIUrl":"https://doi.org/10.1093/oso/9780198855415.003.0003","url":null,"abstract":"The aim of this chapter is to present key applications of causality theory, as relevant to black-hole spacetimes. For this we need to introduce the concept of conformal completions, which is done in Section 3.1. We continue, in Section 3.2, with a review of the null splitting theorem of Galloway. Section 3.3 contains complete proofs of a few versions of the topological censorship theorems, which are otherwise scattered across the literature, and which play a basic role in understanding the topology of black holes. In Section 3.4 we review some key incompleteness theorems, also known under the name of singularity theorems. Section 3.5 is devoted to the presentation of a few versions of the area theorem, which is a cornerstones of ‘black-hole thermodynamics’. We close this chapter with a short discussion of the role played by causality theory when studying the wave equation.","PeriodicalId":129765,"journal":{"name":"Geometry of Black Holes","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124758050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projection diagrams 投影图
Pub Date : 2020-08-25 DOI: 10.1093/oso/9780198855415.003.0007
P. Chruściel
In this chapter we show that one can usefully represent classes of non-spherically symmetric geometries in terms of two-dimensional diagrams, called projection diagrams, using an auxiliary two-dimensional metric constructed out of the spacetime metric. Whenever such a construction can be carried out, the issues such as stable causality, global hyperbolicity, the existence of event or Cauchy horizons, the causal nature of boundaries, and the existence of conformally smooth infinities become evident by inspection of the diagrams.
在这一章中,我们将展示我们可以利用一个由时空度规构造的辅助二维度规,用二维图(称为投影图)来有效地表示非球对称几何的类。每当这样的构造可以被执行时,诸如稳定因果性、全局双曲性、事件或柯西视界的存在性、边界的因果性以及共形光滑无穷大的存在性等问题就会通过检查图而变得明显。
{"title":"Projection diagrams","authors":"P. Chruściel","doi":"10.1093/oso/9780198855415.003.0007","DOIUrl":"https://doi.org/10.1093/oso/9780198855415.003.0007","url":null,"abstract":"In this chapter we show that one can usefully represent classes of non-spherically symmetric geometries in terms of two-dimensional diagrams, called projection diagrams, using an auxiliary two-dimensional metric constructed out of the spacetime metric. Whenever such a construction can be carried out, the issues such as stable causality, global hyperbolicity, the existence of event or Cauchy horizons, the causal nature of boundaries, and the existence of conformally smooth infinities become evident by inspection of the diagrams.","PeriodicalId":129765,"journal":{"name":"Geometry of Black Holes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116632399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geometry of Black Holes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1