E. Bothos, K. Christidis, Dimitris Apostolou, G. Mentzas
Recommender Systems have emerged as a way to tackle the overload of information reflected in the increasing volume of information artefacts in the web and elsewhere. Recommender Systems analyse existing information on the user activities in order to estimate future preferences. However, in real life situations, different types of information can be found and their interpretation can vary as well. Each recommender system implements a different approach for utilizing the known information and predicting the user preferences. A problem is that of blending the recommendations in an adaptive, intuitive way while performing better than base recommenders. In this work we propose an approach based on information markets for the fusion of recommender systems. Information Markets have unique characteristics that make them suitable building blocks for ensemble recommenders. We evaluate our approach with the Movielens and Netflix datasets and discuss the results of our experiments.
{"title":"Information market based recommender systems fusion","authors":"E. Bothos, K. Christidis, Dimitris Apostolou, G. Mentzas","doi":"10.1145/2039320.2039321","DOIUrl":"https://doi.org/10.1145/2039320.2039321","url":null,"abstract":"Recommender Systems have emerged as a way to tackle the overload of information reflected in the increasing volume of information artefacts in the web and elsewhere. Recommender Systems analyse existing information on the user activities in order to estimate future preferences. However, in real life situations, different types of information can be found and their interpretation can vary as well. Each recommender system implements a different approach for utilizing the known information and predicting the user preferences. A problem is that of blending the recommendations in an adaptive, intuitive way while performing better than base recommenders. In this work we propose an approach based on information markets for the fusion of recommender systems. Information Markets have unique characteristics that make them suitable building blocks for ensemble recommenders. We evaluate our approach with the Movielens and Netflix datasets and discuss the results of our experiments.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122883995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pairwise interaction networks capture inter-user dependencies (e.g. social networks) and inter-item dependencies (e.g item categories) that provide insight into user and item behavior. It is often assumed that such interaction information is informative for preference prediction. This may not be the case, as the some of the observed interactions may not be correlated with the preferences, and their use may negatively impact performance by introducing undesired noise. We propose an approach for weighting each interaction, such that we can determine the importance of each interaction to the preference prediction task. We model the preferences using kernel matrix factorization; where the kernels capture the weighted effects of the interactions. Our approach is validated on Last.fm and Movielens datasets; which include multiple sources of explicit and implicit inter-user and inter-item interactions. Our experiments suggest that learning the most important interactions can improve recommendation performance when compared to the standard matrix factorization approach.
{"title":"A kernel-based approach to exploiting interaction-networks in heterogeneous information sources for improved recommender systems","authors":"Oluwasanmi Koyejo, Joydeep Ghosh","doi":"10.1145/2039320.2039322","DOIUrl":"https://doi.org/10.1145/2039320.2039322","url":null,"abstract":"Pairwise interaction networks capture inter-user dependencies (e.g. social networks) and inter-item dependencies (e.g item categories) that provide insight into user and item behavior. It is often assumed that such interaction information is informative for preference prediction. This may not be the case, as the some of the observed interactions may not be correlated with the preferences, and their use may negatively impact performance by introducing undesired noise.\u0000 We propose an approach for weighting each interaction, such that we can determine the importance of each interaction to the preference prediction task. We model the preferences using kernel matrix factorization; where the kernels capture the weighted effects of the interactions. Our approach is validated on Last.fm and Movielens datasets; which include multiple sources of explicit and implicit inter-user and inter-item interactions. Our experiments suggest that learning the most important interactions can improve recommendation performance when compared to the standard matrix factorization approach.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121761112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite recommender systems based on collaborative filtering typically outperform content-based systems in terms of recommendation quality, they suffer from the new item problem, i.e., they are not able to recommend items that have few or no ratings. This problem is particularly acute in TV applications, where the catalog of available items (e.g., TV programs) is very dynamic. On the contrary, content-based recommender systems are able to recommend both old and new items but the general quality of the recommendations in terms of relevance to the users is low. In this article we present two different approaches for building hybrid collaborative+content recommender systems, whose purpose is to produce relevant recommendations, while overcoming the new item issue. The approaches have been tested on two datasets: a version of the well--known Movielens dataset enriched with content meta--data, and an implicit dataset collected from 15'000 IPTV users over a period of six months.
{"title":"Hybrid algorithms for recommending new items","authors":"P. Cremonesi, R. Turrin, Fabio Airoldi","doi":"10.1145/2039320.2039325","DOIUrl":"https://doi.org/10.1145/2039320.2039325","url":null,"abstract":"Despite recommender systems based on collaborative filtering typically outperform content-based systems in terms of recommendation quality, they suffer from the new item problem, i.e., they are not able to recommend items that have few or no ratings. This problem is particularly acute in TV applications, where the catalog of available items (e.g., TV programs) is very dynamic. On the contrary, content-based recommender systems are able to recommend both old and new items but the general quality of the recommendations in terms of relevance to the users is low. In this article we present two different approaches for building hybrid collaborative+content recommender systems, whose purpose is to produce relevant recommendations, while overcoming the new item issue. The approaches have been tested on two datasets: a version of the well--known Movielens dataset enriched with content meta--data, and an implicit dataset collected from 15'000 IPTV users over a period of six months.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126535687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryam Fazel-Zarandi, Hugh J. Devlin, Yun Huang, N. Contractor
Knowledge networks and recommender systems are especially important for expert finding within organizations and scientific communities. Useful recommendation of experts, however, is not an easy task for many reasons: It requires reasoning about multiple complex networks from heterogeneous sources (such as collaboration networks of individuals, article citation networks, and concept networks) and depends significantly on the needs of individuals in seeking recommendations. Although over the past decade much effort has gone into developing techniques to increase and evaluate the quality of recommendations, personalizing recommendations according to individuals' motivations has not received much attention. While previous work in the literature has focused primarily on identifying experts, our focus here is on personalizing the selection of an expert through a principled application of social science theories to model the user's motivation. In this paper, we present an expert recommender system capable of applying multiple theoretical mechanisms to the problem of personalized recommendations through profiling users' motivations and their relations. To this end, we use the Multi-Theoretical Multi-Level (MTML) framework which investigates social drivers for network formation in the communities with diverse goals. This framework serves as the theoretical basis for mapping motivations to the appropriate domain data, heuristic, and objective functions for the personalized expert recommendation. As a proof of concept, we developed a prototype recommender grounded in social science theories, and utilizing computational techniques from social network analysis and representational techniques from the semantic web to facilitate combining and operating on data from heterogeneous sources. We evaluated the prototype's ability to predict collaborations for scientific research teams, using a simple off-line methodology. Preliminary results demonstrate encouraging success while offering significant personalization options and providing flexibility in customizing the recommendation heuristic based on users' motivations. In particular, recommendation heuristics based on different motivation profiles result in different recommendations, and taken as a whole better capture the diversity of observed expert collaboration.
{"title":"Expert recommendation based on social drivers, social network analysis, and semantic data representation","authors":"Maryam Fazel-Zarandi, Hugh J. Devlin, Yun Huang, N. Contractor","doi":"10.1145/2039320.2039326","DOIUrl":"https://doi.org/10.1145/2039320.2039326","url":null,"abstract":"Knowledge networks and recommender systems are especially important for expert finding within organizations and scientific communities. Useful recommendation of experts, however, is not an easy task for many reasons: It requires reasoning about multiple complex networks from heterogeneous sources (such as collaboration networks of individuals, article citation networks, and concept networks) and depends significantly on the needs of individuals in seeking recommendations.\u0000 Although over the past decade much effort has gone into developing techniques to increase and evaluate the quality of recommendations, personalizing recommendations according to individuals' motivations has not received much attention. While previous work in the literature has focused primarily on identifying experts, our focus here is on personalizing the selection of an expert through a principled application of social science theories to model the user's motivation. In this paper, we present an expert recommender system capable of applying multiple theoretical mechanisms to the problem of personalized recommendations through profiling users' motivations and their relations. To this end, we use the Multi-Theoretical Multi-Level (MTML) framework which investigates social drivers for network formation in the communities with diverse goals. This framework serves as the theoretical basis for mapping motivations to the appropriate domain data, heuristic, and objective functions for the personalized expert recommendation.\u0000 As a proof of concept, we developed a prototype recommender grounded in social science theories, and utilizing computational techniques from social network analysis and representational techniques from the semantic web to facilitate combining and operating on data from heterogeneous sources. We evaluated the prototype's ability to predict collaborations for scientific research teams, using a simple off-line methodology. Preliminary results demonstrate encouraging success while offering significant personalization options and providing flexibility in customizing the recommendation heuristic based on users' motivations. In particular, recommendation heuristics based on different motivation profiles result in different recommendations, and taken as a whole better capture the diversity of observed expert collaboration.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122560478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ignacio Fernández-Tobías, Iván Cantador, Marius Kaminskas, F. Ricci
In this paper, we present an ongoing research work on the design and development of a generic knowledge-based description framework built upon semantic networks. It aims at integrating and exploiting knowledge on several domains to provide cross-domain item recommendations. More specifically, we propose an approach that automatically extracts information about two different domains, such as architecture and music, which are available in Linked Data repositories. This enables to link concepts in the two domains by means of a weighted directed acyclic graph, and to perform weight spreading on such graph to identify items in the target domain (music artists) that are related to items of the source domain (places of interest).
{"title":"A generic semantic-based framework for cross-domain recommendation","authors":"Ignacio Fernández-Tobías, Iván Cantador, Marius Kaminskas, F. Ricci","doi":"10.1145/2039320.2039324","DOIUrl":"https://doi.org/10.1145/2039320.2039324","url":null,"abstract":"In this paper, we present an ongoing research work on the design and development of a generic knowledge-based description framework built upon semantic networks. It aims at integrating and exploiting knowledge on several domains to provide cross-domain item recommendations. More specifically, we propose an approach that automatically extracts information about two different domains, such as architecture and music, which are available in Linked Data repositories. This enables to link concepts in the two domains by means of a weighted directed acyclic graph, and to perform weight spreading on such graph to identify items in the target domain (music artists) that are related to items of the source domain (places of interest).","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132125149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Movie recommender systems attempt to find movies which are of interest for their users. However, as new movies are added, and new users join movie recommendation services, the problem of recommending suitable items becomes increasingly harder. In this paper, we present a simple way of using a priori movie data in order to improve the accuracy of collaborative filtering recommender systems. The approach decreases the sparsity of the rating matrix by inferring personal ratings on tags assigned to movies. The new tag ratings are used to find which movies to recommend. Experiments performed on data from the movie recommendation community Moviepilot show a positive effect on the quality of recommended items.
{"title":"Personalizing tags: a folksonomy-like approach for recommending movies","authors":"A. Said, B. Kille, E. W. D. Luca, S. Albayrak","doi":"10.1145/2039320.2039328","DOIUrl":"https://doi.org/10.1145/2039320.2039328","url":null,"abstract":"Movie recommender systems attempt to find movies which are of interest for their users. However, as new movies are added, and new users join movie recommendation services, the problem of recommending suitable items becomes increasingly harder. In this paper, we present a simple way of using a priori movie data in order to improve the accuracy of collaborative filtering recommender systems. The approach decreases the sparsity of the rating matrix by inferring personal ratings on tags assigned to movies. The new tag ratings are used to find which movies to recommend. Experiments performed on data from the movie recommendation community Moviepilot show a positive effect on the quality of recommended items.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127217990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most recommender systems focus on the areas of leisure activities. As the Web evolves into omnipresent utility, recommender systems penetrate more serious applications such as those in online scientific communities. In this paper, we investigate the task of recommendation in online scientific communities which exhibit two characteristics: 1) there exists very rich information about users and items; 2) The users in the scientific communities tend not to give explicit ratings to the resources, even though they have clear preference in their minds. To address the above two characteristics, we propose matrix factorization techniques to incorporate rich user and item information into recommendation with implicit feedback. Specifically, the user information matrix is decomposed into a shared subspace with the implicit feedback matrix, and so does the item information matrix. In other words, the subspaces between multiple related matrices are jointly learned by sharing information between the matrices. The experiments on the testbed from an online scientific community (i.e., Nanohub) show that the proposed method can effectively improve the recommendation performance.
{"title":"Matrix co-factorization for recommendation with rich side information and implicit feedback","authors":"Yi Fang, Luo Si","doi":"10.1145/2039320.2039330","DOIUrl":"https://doi.org/10.1145/2039320.2039330","url":null,"abstract":"Most recommender systems focus on the areas of leisure activities. As the Web evolves into omnipresent utility, recommender systems penetrate more serious applications such as those in online scientific communities. In this paper, we investigate the task of recommendation in online scientific communities which exhibit two characteristics: 1) there exists very rich information about users and items; 2) The users in the scientific communities tend not to give explicit ratings to the resources, even though they have clear preference in their minds. To address the above two characteristics, we propose matrix factorization techniques to incorporate rich user and item information into recommendation with implicit feedback. Specifically, the user information matrix is decomposed into a shared subspace with the implicit feedback matrix, and so does the item information matrix. In other words, the subspaces between multiple related matrices are jointly learned by sharing information between the matrices. The experiments on the testbed from an online scientific community (i.e., Nanohub) show that the proposed method can effectively improve the recommendation performance.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122568462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many e-commerce sites use recommender systems, which suggest items that customers prefer. Though recommender systems have achieved great success, their potential is not yet fulfilled. One weakness of current systems is that the actions of the system toward customers are restricted to simply showing items. We propose a system that relaxes this restriction to offer price discounting as well as recommendations. The system can determine whether or not to offer price discounting for individual customers, and such a pricing scheme is called price personalization. We discuss how the introduction of price personalization improves the commercial viability of managing a recommender system, and thereby improving the customers' sense of the system's reliability. We then propose a method for adding price personalization to standard recommendation algorithms which utilize two types of customer data: preferential data and purchasing history. Based on the analysis of the experimental results, we reveal further issues in designing a personalized pricing recommender system.
{"title":"Personalized pricing recommender system: multi-stage epsilon-greedy approach","authors":"Toshihiro Kamishima, S. Akaho","doi":"10.1145/2039320.2039329","DOIUrl":"https://doi.org/10.1145/2039320.2039329","url":null,"abstract":"Many e-commerce sites use recommender systems, which suggest items that customers prefer. Though recommender systems have achieved great success, their potential is not yet fulfilled. One weakness of current systems is that the actions of the system toward customers are restricted to simply showing items. We propose a system that relaxes this restriction to offer price discounting as well as recommendations. The system can determine whether or not to offer price discounting for individual customers, and such a pricing scheme is called price personalization. We discuss how the introduction of price personalization improves the commercial viability of managing a recommender system, and thereby improving the customers' sense of the system's reliability. We then propose a method for adding price personalization to standard recommendation algorithms which utilize two types of customer data: preferential data and purchasing history. Based on the analysis of the experimental results, we reveal further issues in designing a personalized pricing recommender system.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132191830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of the Experience Discovery project is to recommend extracurricular activities to high school and middle school students in urban areas. In implementing this system, we have been able to make use of both usage data and data drawn from a social networking site. Using pilot data, we are able to show that very simple aggregation techniques applied to the social network can improve recommendation accuracy.
{"title":"Experience Discovery: hybrid recommendation of student activities using social network data","authors":"R. Burke, Yong Zheng, Scott Riley","doi":"10.1145/2039320.2039327","DOIUrl":"https://doi.org/10.1145/2039320.2039327","url":null,"abstract":"The aim of the Experience Discovery project is to recommend extracurricular activities to high school and middle school students in urban areas. In implementing this system, we have been able to make use of both usage data and data drawn from a social networking site. Using pilot data, we are able to show that very simple aggregation techniques applied to the social network can improve recommendation accuracy.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121667634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Collaborative filtering approaches exploit information about historical affinities or ratings to predict unknown affinities between sets of "users" and "items" and make recommendations. However a model that also incorporates heterogeneous sources of information that may be available on the users and/or items can become a much more effective recommender, in terms of both increased relevance of the predictions as well as explainability of the results. In this paper, we propose a Bayesian approach that exploits not only such "side-information", but also a different kind of heterogeneity that captures the variations in the mapping from user/item attributes to the affinities of interest. Such predictive heterogeneity is likely to occur in large recommender systems that involve a diverse set of users, and can be mitigated by using multiple localized predictive models rather than a single global one that covers all user-item pairs. The scope or coverage of each local model is determined simultaneously with the model parameters. The proposed approach can incorporate different types of inputs to predict the preferences of diverse users and items. We compare it against well-known alternative approaches and analyze the results in terms of both accuracy and interpretability.
{"title":"Learning multiple models for exploiting predictive heterogeneity in recommender systems","authors":"Clinton Jones, Joydeep Ghosh, Aayush Sharma","doi":"10.1145/2039320.2039323","DOIUrl":"https://doi.org/10.1145/2039320.2039323","url":null,"abstract":"Collaborative filtering approaches exploit information about historical affinities or ratings to predict unknown affinities between sets of \"users\" and \"items\" and make recommendations. However a model that also incorporates heterogeneous sources of information that may be available on the users and/or items can become a much more effective recommender, in terms of both increased relevance of the predictions as well as explainability of the results. In this paper, we propose a Bayesian approach that exploits not only such \"side-information\", but also a different kind of heterogeneity that captures the variations in the mapping from user/item attributes to the affinities of interest. Such predictive heterogeneity is likely to occur in large recommender systems that involve a diverse set of users, and can be mitigated by using multiple localized predictive models rather than a single global one that covers all user-item pairs. The scope or coverage of each local model is determined simultaneously with the model parameters. The proposed approach can incorporate different types of inputs to predict the preferences of diverse users and items. We compare it against well-known alternative approaches and analyze the results in terms of both accuracy and interpretability.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129620386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}