Pub Date : 2019-04-03DOI: 10.5772/intechopen.82620
E. Zhukovskaya, A. Karelin, A. Rumyantsev
In this chapter, the authors described the actuality of the investigations of neurocognitive dysfunctions in patients with iron deficiency. In infants, the incidence of iron deficiency is 73%; the probability of its transition to iron deficiency anemia is very high. The development of myelin at an early age reduces the production of myelin, and the formation of g-aminobutyric acid worsens the metabolism of dopamine in the striatal brain, which leads to slowing of motor function and behavioral problems in the child. Children with iron deficiency conditions are prone to developmental delays, reduced school performance, and behavioral disorders. In older adults, cognitive dysfunctions depend on complications of the vascular nature, complicated by comorbid iron deficiency. Concomitant pathology also influences iron homeostasis. The regulating mechanisms of iron deficiency, as the same cognitive deficiency, despite the age involve more than 200 proteins from iron homeostasis, appropriate cofactors: derivatives of vitamin B, copper, manganese, zinc ions, enzymes, cell growth factors, etc. All these partners could influence separately or together to the development of iron deficiency and a complication of it neurocognitive dysfunctions. The combination of iron deficiency anemia and iron deficiency with comorbid pathology often exacerbates cognitive problems and requires a weighted approach to the choice of therapeutic correction tactics.
{"title":"Neurocognitive Dysfunctions in Iron Deficiency Patients","authors":"E. Zhukovskaya, A. Karelin, A. Rumyantsev","doi":"10.5772/intechopen.82620","DOIUrl":"https://doi.org/10.5772/intechopen.82620","url":null,"abstract":"In this chapter, the authors described the actuality of the investigations of neurocognitive dysfunctions in patients with iron deficiency. In infants, the incidence of iron deficiency is 73%; the probability of its transition to iron deficiency anemia is very high. The development of myelin at an early age reduces the production of myelin, and the formation of g-aminobutyric acid worsens the metabolism of dopamine in the striatal brain, which leads to slowing of motor function and behavioral problems in the child. Children with iron deficiency conditions are prone to developmental delays, reduced school performance, and behavioral disorders. In older adults, cognitive dysfunctions depend on complications of the vascular nature, complicated by comorbid iron deficiency. Concomitant pathology also influences iron homeostasis. The regulating mechanisms of iron deficiency, as the same cognitive deficiency, despite the age involve more than 200 proteins from iron homeostasis, appropriate cofactors: derivatives of vitamin B, copper, manganese, zinc ions, enzymes, cell growth factors, etc. All these partners could influence separately or together to the development of iron deficiency and a complication of it neurocognitive dysfunctions. The combination of iron deficiency anemia and iron deficiency with comorbid pathology often exacerbates cognitive problems and requires a weighted approach to the choice of therapeutic correction tactics.","PeriodicalId":14596,"journal":{"name":"Iron Deficiency Anemia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83650075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.79834
Elia Hermila Valdes-Miramontes, R. Rodríguez-Macías, M. Ruiz-López
Iron deficiency anemia is a global public health problem. According to the World Health Organization, anemia affects 1620 million of people worldwide, which corresponds to 28% of the population. Fifty percent of the anemia cases are attributed to low iron intake. Among the main sources of iron from vegetable origin are legumes, such as beans, lentils, soybeans, lupin, some vegetables such as spinach, and some dehydrated fruits. Non- hemic iron is mainly from legumes and is the most important source of this mineral in the diet of developing countries’ population, but its bioavailability is very variable. Consequently, the fortification of foods with high and cheap iron sources is a practical way to prevent its deficiency. Some studies have shown that the roots of some legumes, especially nitrogen fixers, accumulate a significant amount of iron mainly in the nodule proteins. The purpose of this chapter is to present the current knowledge of novel sources of plant-based hemic iron with a high bioavailability to be used in food fortification.
缺铁性贫血是一个全球性的公共卫生问题。根据世界卫生组织(World Health Organization)的数据,全球有16.2亿人患有贫血,占全球人口的28%。50%的贫血病例是由于铁摄入不足造成的。蔬菜中铁的主要来源是豆类,如豆类,扁豆,大豆,罗苹,一些蔬菜,如菠菜,和一些脱水水果。非缺铁主要来自豆类,是发展中国家人口饮食中这种矿物质的最重要来源,但其生物利用度变化很大。因此,强化高铁和廉价铁来源的食物是防止其缺乏的一种实用方法。一些研究表明,一些豆科植物的根,特别是固氮植物,主要在根瘤蛋白中积累了大量的铁。本章的目的是介绍目前关于高生物利用度、可用于食品强化的植物性缺铁的新来源的知识。
{"title":"Vegetal Sources of Iron","authors":"Elia Hermila Valdes-Miramontes, R. Rodríguez-Macías, M. Ruiz-López","doi":"10.5772/INTECHOPEN.79834","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79834","url":null,"abstract":"Iron deficiency anemia is a global public health problem. According to the World Health Organization, anemia affects 1620 million of people worldwide, which corresponds to 28% of the population. Fifty percent of the anemia cases are attributed to low iron intake. Among the main sources of iron from vegetable origin are legumes, such as beans, lentils, soybeans, lupin, some vegetables such as spinach, and some dehydrated fruits. Non- hemic iron is mainly from legumes and is the most important source of this mineral in the diet of developing countries’ population, but its bioavailability is very variable. Consequently, the fortification of foods with high and cheap iron sources is a practical way to prevent its deficiency. Some studies have shown that the roots of some legumes, especially nitrogen fixers, accumulate a significant amount of iron mainly in the nodule proteins. The purpose of this chapter is to present the current knowledge of novel sources of plant-based hemic iron with a high bioavailability to be used in food fortification.","PeriodicalId":14596,"journal":{"name":"Iron Deficiency Anemia","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80819724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.78958
Yangho Kim
The apical divalent metal transporter 1 (DMT1) and the iron exporter ferroportin 1 (FPN1) are responsible for the absorption of iron and other divalent metals (manganese, lead, and cadmium). Thus, an iron-deficient diet can lead to excess absorption of manganese, lead, and cadmium, and high blood concentrations of these metals. Relative to males, females of childbearing age have higher blood concentrations of manganese because of their lower blood concentrations of ferritin. Moreover, relative to premenopausal women, menopausal women have lower blood manganese levels because their higher concentrations of ferritin. There is also a significant increase in the whole blood manganese level throughout pregnancy due to the upregulation of iron absorption at this time. Several previous studies reported a temporal relationship between iron deficiency and increased blood lead concentrations in children. However, this association does not occur in postmenarcheal or postmenopausal women because estrogen promotes bone mineralization and redistributes blood lead into the bone, overshadowing the effect of ferritin on blood lead level. Although blood cadmium concentrations are higher in females of childbearing age because of their lower ferritin concentrations, there is no association of blood cadmium and iron levels in infants and postmenopausal women.
{"title":"Effect of Iron Deficiency on the Increased Blood Divalent Metal Concentrations","authors":"Yangho Kim","doi":"10.5772/INTECHOPEN.78958","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78958","url":null,"abstract":"The apical divalent metal transporter 1 (DMT1) and the iron exporter ferroportin 1 (FPN1) are responsible for the absorption of iron and other divalent metals (manganese, lead, and cadmium). Thus, an iron-deficient diet can lead to excess absorption of manganese, lead, and cadmium, and high blood concentrations of these metals. Relative to males, females of childbearing age have higher blood concentrations of manganese because of their lower blood concentrations of ferritin. Moreover, relative to premenopausal women, menopausal women have lower blood manganese levels because their higher concentrations of ferritin. There is also a significant increase in the whole blood manganese level throughout pregnancy due to the upregulation of iron absorption at this time. Several previous studies reported a temporal relationship between iron deficiency and increased blood lead concentrations in children. However, this association does not occur in postmenarcheal or postmenopausal women because estrogen promotes bone mineralization and redistributes blood lead into the bone, overshadowing the effect of ferritin on blood lead level. Although blood cadmium concentrations are higher in females of childbearing age because of their lower ferritin concentrations, there is no association of blood cadmium and iron levels in infants and postmenopausal women.","PeriodicalId":14596,"journal":{"name":"Iron Deficiency Anemia","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73043845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.79358
Francesco Fedele, Alessandra Cinque, M. Mancone, V. Maestrini, C. Caira
Heart failure (HF) is a major public health problem because it is one of the most common causes of morbidity and mortality in Western countries, with a prevalence of 1–2% in the adult population, rising to ≥10% in those age >70 years. In addition to the “classic” co-morbidities, such as COPD, arterial hypertension, diabetes, renal failure, etc., there are other conditions frequently found in patients with heart failure that many times are underestimated. One example are anemia and iron deficiency (ID). ID, regardless of anemia impair exercise tolerance, symptoms and quality of life, with a strong negative prognostic impact on hospitalization and mortality rate. Despite strong evidence of high prevalence of ID in these patients and current guidelines recommendations, the diagnosis of ID and its monitoring over time still have low priority for physicians in clinical practice. Consequently ID is under-treated; furthermore current therapies, in particular i.v. iron as ferric carboxymaltose, though effective, turn out to be poorly managed by clinicians. ID should be considered more in real world HF healthcare settings to improve patients’ quality of life and outcome.
{"title":"Heart Failure and Iron Deficiency","authors":"Francesco Fedele, Alessandra Cinque, M. Mancone, V. Maestrini, C. Caira","doi":"10.5772/INTECHOPEN.79358","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79358","url":null,"abstract":"Heart failure (HF) is a major public health problem because it is one of the most common causes of morbidity and mortality in Western countries, with a prevalence of 1–2% in the adult population, rising to ≥10% in those age >70 years. In addition to the “classic” co-morbidities, such as COPD, arterial hypertension, diabetes, renal failure, etc., there are other conditions frequently found in patients with heart failure that many times are underestimated. One example are anemia and iron deficiency (ID). ID, regardless of anemia impair exercise tolerance, symptoms and quality of life, with a strong negative prognostic impact on hospitalization and mortality rate. Despite strong evidence of high prevalence of ID in these patients and current guidelines recommendations, the diagnosis of ID and its monitoring over time still have low priority for physicians in clinical practice. Consequently ID is under-treated; furthermore current therapies, in particular i.v. iron as ferric carboxymaltose, though effective, turn out to be poorly managed by clinicians. ID should be considered more in real world HF healthcare settings to improve patients’ quality of life and outcome.","PeriodicalId":14596,"journal":{"name":"Iron Deficiency Anemia","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74199149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80940
C. Burz, A. Cismaru, V. Pop, A. Bojan
Iron is an important element in living systems as it participates in a series of metabolic processes including DNA synthesis and oxygen and electron transport. Iron deficiency is the most common cause of anemia globally being an important healthcare problem. If left untreated, iron-deficiency anemia (IDA) can cause significant morbidity and often is the result of a more serious underlying condition. Correcting iron deficiency and replenish - ing iron reserves are important objectives of a well-conducted treatment, but diagnosis should prompt further investigation to establish the cause for potential reversal. Age, tolerance, preferred route of administration, and severity of anemia are some of the patient’s characteristics which require an individualized approach.
{"title":"Iron-Deficiency Anemia","authors":"C. Burz, A. Cismaru, V. Pop, A. Bojan","doi":"10.5772/INTECHOPEN.80940","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80940","url":null,"abstract":"Iron is an important element in living systems as it participates in a series of metabolic processes including DNA synthesis and oxygen and electron transport. Iron deficiency is the most common cause of anemia globally being an important healthcare problem. If left untreated, iron-deficiency anemia (IDA) can cause significant morbidity and often is the result of a more serious underlying condition. Correcting iron deficiency and replenish - ing iron reserves are important objectives of a well-conducted treatment, but diagnosis should prompt further investigation to establish the cause for potential reversal. Age, tolerance, preferred route of administration, and severity of anemia are some of the patient’s characteristics which require an individualized approach.","PeriodicalId":14596,"journal":{"name":"Iron Deficiency Anemia","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75388181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.79790
R. Miniero, V. Talarico, Maria Concetta Galati, L. Giancotti, P. Saracco, G. Raiola
Iron deficiency anemia is considered the most common and widespread nutritional form of anemia in childhood. Red cells are hypochromic and microcytic with low mean cor puscular volume (MCV), low mean corpuscular hemoglobin (MCH) and low reticulocyte hemoglobin content (CHr). Red blood cell distribution width (RDW) is increased. Serum iron is reduced, transferrin is increased and serum ferritin is decreased. Prematurity, decreased dietary source, malabsorption and blood loss represent the most common causes of iron deficiency. Recommended oral dose of elemental iron is 2–6 mg/kg/day; when normal hemoglobin values are reached, treatment must be generally continued for 3 months in order to replenish iron stores. Rarely intravenous therapy is required. The pediatricians and other health care providers should strive to prevent and eliminate iron deficiency and iron-deficiency anemia.
{"title":"Iron Deficiency and Iron Deficiency Anemia in Children","authors":"R. Miniero, V. Talarico, Maria Concetta Galati, L. Giancotti, P. Saracco, G. Raiola","doi":"10.5772/INTECHOPEN.79790","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79790","url":null,"abstract":"Iron deficiency anemia is considered the most common and widespread nutritional form of anemia in childhood. Red cells are hypochromic and microcytic with low mean cor puscular volume (MCV), low mean corpuscular hemoglobin (MCH) and low reticulocyte hemoglobin content (CHr). Red blood cell distribution width (RDW) is increased. Serum iron is reduced, transferrin is increased and serum ferritin is decreased. Prematurity, decreased dietary source, malabsorption and blood loss represent the most common causes of iron deficiency. Recommended oral dose of elemental iron is 2–6 mg/kg/day; when normal hemoglobin values are reached, treatment must be generally continued for 3 months in order to replenish iron stores. Rarely intravenous therapy is required. The pediatricians and other health care providers should strive to prevent and eliminate iron deficiency and iron-deficiency anemia.","PeriodicalId":14596,"journal":{"name":"Iron Deficiency Anemia","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76062546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}