Pub Date : 2018-09-26DOI: 10.5772/INTECHOPEN.74055
Aysan Lektemur Alpan and Nebi Cansin Karakan
Balanced nutrition is the key point of a healthy life includes intake of vitamins and minerals. Vitamins such as folate (B9) have an important role in system homeostasis. Vitamin B derivatives, also folate are water-soluble vitamin class which plays a key role in cell metabolism. Folate is necessary to produce new cells via stimulating DNA and RNA methylation. Folate has positive effect on recurrent aphthous stomatitis, gingival hyperplasia, preventing early childhood caries and periodontal diseases. Alveolar bone and periodontal ligament development are related to sufficient concentrations of folate. Folate reduces gum bleeding, and increases osteoblastic activity and bone mineral density, also decreases osteoclastic activity. Effect on DNA and RNA metabolism causes the reduction of reactive oxygen species. In early stages of pregnancy, folate deficiency may cause birth anomalies due to neural tube defects such as lip, alveolar and palatal clefts. Folate deficiency effects on DNA and RNA metabolism negatively. DNA and RNA repair, production and methylation system is being interrupted. Therefore chromosal abnormalities occur and that situation may cause cancer and leukemia. Folate is mainly provides systemic homeostasis and important for maintaining chromosomal activities. Consequently adequate concentrations of folate must be taken regularly.
{"title":"Folate in Dentistry","authors":"Aysan Lektemur Alpan and Nebi Cansin Karakan","doi":"10.5772/INTECHOPEN.74055","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74055","url":null,"abstract":"Balanced nutrition is the key point of a healthy life includes intake of vitamins and minerals. Vitamins such as folate (B9) have an important role in system homeostasis. Vitamin B derivatives, also folate are water-soluble vitamin class which plays a key role in cell metabolism. Folate is necessary to produce new cells via stimulating DNA and RNA methylation. Folate has positive effect on recurrent aphthous stomatitis, gingival hyperplasia, preventing early childhood caries and periodontal diseases. Alveolar bone and periodontal ligament development are related to sufficient concentrations of folate. Folate reduces gum bleeding, and increases osteoblastic activity and bone mineral density, also decreases osteoclastic activity. Effect on DNA and RNA metabolism causes the reduction of reactive oxygen species. In early stages of pregnancy, folate deficiency may cause birth anomalies due to neural tube defects such as lip, alveolar and palatal clefts. Folate deficiency effects on DNA and RNA metabolism negatively. DNA and RNA repair, production and methylation system is being interrupted. Therefore chromosal abnormalities occur and that situation may cause cancer and leukemia. Folate is mainly provides systemic homeostasis and important for maintaining chromosomal activities. Consequently adequate concentrations of folate must be taken regularly.","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129146412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.5772/INTECHOPEN.74829
R. R. Sultana, S. N. Zafarullah, N. Kirubamani
This study is an attempt to assess, evaluate and compare the spectral difference in saliva and serum between healthy and anomalies pregnant women because of deficiency of folate by utilizing Fourier Transform Infrared Spectroscopy. Folate is required for the development of healthy embryo and plays vital role in the fetus spinal cord and brain development. The present work is to study the folate deficiency in pregnancy-Anomalies (open neural defect) and contrast the outcome of the result with normal healthy pregnant women. The outcome of the results showed that there is a significant difference or contrast between the folate of healthy pregnant and anomalies (open neural defect) in pregnant women, both in the sample of saliva and serum. From the spectral analysis, the intensity ratio parameters have been computed and introduced. The result of the outcomes shows that for both qualitative and quantitative investigation of biological fluids and to distinguish between the sample sets from healthy and anomalies-diseased groups, FTIR is utilized. The internal standard method is described in characterizing the samples quantitatively.
{"title":"Deficiency of Folate in Pregnancy on Diverse Subjects Using FTIR Spectroscopy","authors":"R. R. Sultana, S. N. Zafarullah, N. Kirubamani","doi":"10.5772/INTECHOPEN.74829","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74829","url":null,"abstract":"This study is an attempt to assess, evaluate and compare the spectral difference in saliva and serum between healthy and anomalies pregnant women because of deficiency of folate by utilizing Fourier Transform Infrared Spectroscopy. Folate is required for the development of healthy embryo and plays vital role in the fetus spinal cord and brain development. The present work is to study the folate deficiency in pregnancy-Anomalies (open neural defect) and contrast the outcome of the result with normal healthy pregnant women. The outcome of the results showed that there is a significant difference or contrast between the folate of healthy pregnant and anomalies (open neural defect) in pregnant women, both in the sample of saliva and serum. From the spectral analysis, the intensity ratio parameters have been computed and introduced. The result of the outcomes shows that for both qualitative and quantitative investigation of biological fluids and to distinguish between the sample sets from healthy and anomalies-diseased groups, FTIR is utilized. The internal standard method is described in characterizing the samples quantitatively.","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126514802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.5772/INTECHOPEN.77268
M. Cincović, Talija Hristovska, B. Belic
The periparturient period in cows is associated with metabolic stress and a state of negative energy balance, which are characterized by increased lipolysis, ketogenesis, hepatic steatosis, oxidative stress and insulin resistance. Such metabolic changes may exert adverse effects on the health and milk yield of lactating cows. The pharmacoki netics of niacin in ruminants is specific as rumen microorganisms facilitate both the synthesis of tryptophan and the degradation of niacin. Niacin administration to cows leads to an increase in the coenzyme activity, encompassing the activity of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). These coenzymes are actively involved in the metabolism of lipids and carbohydrates, whereas NAD protects the organism from oxidative stress. In periparturient cows, the supplementation of niacin has been found to induce depressed lipolysis and a limited impact of nonesterified fatty acids on all metabolic processes. It also results in decreased lipid peroxidation regardless of the magnitude of lipolysis in the periparturient period. Furthermore, niacin reduces the concentration of ketone bodies, thus preventing the development of fatty lever disease and ketosis in cows. The anti-inflammatory effect of niacin is manifested in stimulating the secretion of adiponectin and inhibiting immune cells. Our results suggest [ 28] that blood NAD and NADP concentrations are a sensitive indicator of the niacin status of cows. The NAD concentrations obtained ranged from 860 to 895 pmol/mL in the control group in the weeks before and after calving. In niacin-supplemented cows, the following NAD concentrations were obtained: 1724.6 pmol/L in the week of calving (week 0), 1968.6 pmol/mL in the first week after calving and 1771.8 pmol/L in the second week after calv ing. The NADP concentrations obtained in the control group ranged from 385.09 to 425.62 pmol/ mL during the entire period under consideration. In niacin-supplemented cows, the following NADP concentrations were obtained: 704.45 pmol/L in the week of calving (week 0), 778.36 pmol/L in the first week after calving and 796.18 pmol/L in the second week after calving.
{"title":"Niacin, Metabolic Stress and Insulin Resistance in Dairy Cows","authors":"M. Cincović, Talija Hristovska, B. Belic","doi":"10.5772/INTECHOPEN.77268","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77268","url":null,"abstract":"The periparturient period in cows is associated with metabolic stress and a state of negative energy balance, which are characterized by increased lipolysis, ketogenesis, hepatic steatosis, oxidative stress and insulin resistance. Such metabolic changes may exert adverse effects on the health and milk yield of lactating cows. The pharmacoki netics of niacin in ruminants is specific as rumen microorganisms facilitate both the synthesis of tryptophan and the degradation of niacin. Niacin administration to cows leads to an increase in the coenzyme activity, encompassing the activity of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). These coenzymes are actively involved in the metabolism of lipids and carbohydrates, whereas NAD protects the organism from oxidative stress. In periparturient cows, the supplementation of niacin has been found to induce depressed lipolysis and a limited impact of nonesterified fatty acids on all metabolic processes. It also results in decreased lipid peroxidation regardless of the magnitude of lipolysis in the periparturient period. Furthermore, niacin reduces the concentration of ketone bodies, thus preventing the development of fatty lever disease and ketosis in cows. The anti-inflammatory effect of niacin is manifested in stimulating the secretion of adiponectin and inhibiting immune cells. Our results suggest [ 28] that blood NAD and NADP concentrations are a sensitive indicator of the niacin status of cows. The NAD concentrations obtained ranged from 860 to 895 pmol/mL in the control group in the weeks before and after calving. In niacin-supplemented cows, the following NAD concentrations were obtained: 1724.6 pmol/L in the week of calving (week 0), 1968.6 pmol/mL in the first week after calving and 1771.8 pmol/L in the second week after calv ing. The NADP concentrations obtained in the control group ranged from 385.09 to 425.62 pmol/ mL during the entire period under consideration. In niacin-supplemented cows, the following NADP concentrations were obtained: 704.45 pmol/L in the week of calving (week 0), 778.36 pmol/L in the first week after calving and 796.18 pmol/L in the second week after calving.","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131193137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.5772/intechopen.80023
J. Leblanc
Vitamins are organic micronutrients, which are substances that must be present in small quantities and that are essential for the growth and development of the human body and are required in numerous metabolic reactions to maintain homeostasis. The 13 vitamins that are required by human metabolisms are divided as either being fat-soluble vitamins (such as vitamins A (retinols and carotenoids), D (cholecalciferol), E (tocopherols and tocotrienols), and K (quinones)) or water-soluble vitamins (which include vitamin C (ascorbic acid) and the B-group vitamins). In the latter group (B-group), these include: vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B7 (biotin), vitamin B9 (folic acid or folate), and vitamin B12 (cobalamins).
{"title":"Introductory Chapter: B-Group Vitamins","authors":"J. Leblanc","doi":"10.5772/intechopen.80023","DOIUrl":"https://doi.org/10.5772/intechopen.80023","url":null,"abstract":"Vitamins are organic micronutrients, which are substances that must be present in small quantities and that are essential for the growth and development of the human body and are required in numerous metabolic reactions to maintain homeostasis. The 13 vitamins that are required by human metabolisms are divided as either being fat-soluble vitamins (such as vitamins A (retinols and carotenoids), D (cholecalciferol), E (tocopherols and tocotrienols), and K (quinones)) or water-soluble vitamins (which include vitamin C (ascorbic acid) and the B-group vitamins). In the latter group (B-group), these include: vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B7 (biotin), vitamin B9 (folic acid or folate), and vitamin B12 (cobalamins).","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127690954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.5772/INTECHOPEN.77170
J. Maupin-Furlow
Thiamine is the water-soluble sulfur containing vitamin B1 that is used to form thiamine diphosphate (ThDP), an enzyme cofactor important in the metabolism of carbohydrates, amino acids and other organic molecules. ThDP is synthesized de novo by certain bacteria, archaea, yeast, fungi, plants, and protozoans. Other organisms, such as humans, rely upon thiamine transport and salvage for metabolism; thus, thiamine is considered an essential vitamin. The focus of this chapter is on the regulation and metabolism of thiamine in archaea. The review will discuss the role ThDP has as an enzyme cofactor and the catalytic and regulatory mechanisms that archaea use to synthesize, salvage and transport thiamine. Future perspectives will be articulated in terms of how archaea have advanced our understanding of thiamine metabolism, regulation and biotechnology applications.
{"title":"Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea","authors":"J. Maupin-Furlow","doi":"10.5772/INTECHOPEN.77170","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77170","url":null,"abstract":"Thiamine is the water-soluble sulfur containing vitamin B1 that is used to form thiamine diphosphate (ThDP), an enzyme cofactor important in the metabolism of carbohydrates, amino acids and other organic molecules. ThDP is synthesized de novo by certain bacteria, archaea, yeast, fungi, plants, and protozoans. Other organisms, such as humans, rely upon thiamine transport and salvage for metabolism; thus, thiamine is considered an essential vitamin. The focus of this chapter is on the regulation and metabolism of thiamine in archaea. The review will discuss the role ThDP has as an enzyme cofactor and the catalytic and regulatory mechanisms that archaea use to synthesize, salvage and transport thiamine. Future perspectives will be articulated in terms of how archaea have advanced our understanding of thiamine metabolism, regulation and biotechnology applications.","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123993571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.5772/INTECHOPEN.78260
R. Goodrich, Marcia Cardoso, S. Marschner
Although transfusion of blood components is becoming increasingly safe, the risk of trans- mission of known and unknown pathogens persists. The application of vitamin B2 (ribo-flavin) and UV light to pathogen inactivation has several appealing factors. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. This photochemical-based method is effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the content and the efficacy of whole blood or blood component. This chapter gives an overview of the innovative technology for pathogen inactivation, the Mirasol ® pathogen reduction technology (PRT) System, based on riboflavin and UV light, summarizing the mechanism of action, toxicol - ogy profile, pathogen reduction performance and clinical efficacy of the process.
{"title":"Vitamin B2 and Innovations in Improving Blood Safety","authors":"R. Goodrich, Marcia Cardoso, S. Marschner","doi":"10.5772/INTECHOPEN.78260","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78260","url":null,"abstract":"Although transfusion of blood components is becoming increasingly safe, the risk of trans- mission of known and unknown pathogens persists. The application of vitamin B2 (ribo-flavin) and UV light to pathogen inactivation has several appealing factors. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. This photochemical-based method is effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the content and the efficacy of whole blood or blood component. This chapter gives an overview of the innovative technology for pathogen inactivation, the Mirasol ® pathogen reduction technology (PRT) System, based on riboflavin and UV light, summarizing the mechanism of action, toxicol - ogy profile, pathogen reduction performance and clinical efficacy of the process.","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121526342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-26DOI: 10.5772/INTECHOPEN.79350
A. Subki, Aisamuddin Ardi Zainal Abidin, Z. Yusof
Current research is focusing on selecting potential genes that can alleviate stress and produce disease-tolerant crop variety. The novel paradigm is to investigate the potential of thiamine as a crop protection molecule in plants. Thiamine or vitamin B1 is important for primary metabolism for all living organisms. The active form, thiamine pyrophosphate (TPP), is a cofactor for the enzymes involved in the synthesis of amino acids, tricarboxylic acid cycle and pentose phosphate pathway. Recently, thiamine is shown to have a role in the processes underlying protection of plants against biotic and abiotic stresses. The aim of this chapter is to review the role of thiamine in plant growth and disease protection and also to highlight that TPP and its intermediates are involved in management of stress. The perspectives on its potential for manipulating the biosynthesis pathway in crop improvement will also be discussed.
{"title":"The Role of Thiamine in Plants and Current Perspectives in Crop Improvement","authors":"A. Subki, Aisamuddin Ardi Zainal Abidin, Z. Yusof","doi":"10.5772/INTECHOPEN.79350","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79350","url":null,"abstract":"Current research is focusing on selecting potential genes that can alleviate stress and produce disease-tolerant crop variety. The novel paradigm is to investigate the potential of thiamine as a crop protection molecule in plants. Thiamine or vitamin B1 is important for primary metabolism for all living organisms. The active form, thiamine pyrophosphate (TPP), is a cofactor for the enzymes involved in the synthesis of amino acids, tricarboxylic acid cycle and pentose phosphate pathway. Recently, thiamine is shown to have a role in the processes underlying protection of plants against biotic and abiotic stresses. The aim of this chapter is to review the role of thiamine in plant growth and disease protection and also to highlight that TPP and its intermediates are involved in management of stress. The perspectives on its potential for manipulating the biosynthesis pathway in crop improvement will also be discussed.","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128705303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-16DOI: 10.5772/INTECHOPEN.74396
Mayumi Yurimoto, M. Hiraoka, Mitsuyo Kageyama, Yoshiko Kontai, C. Nishijima, Kaori Sakamoto, Y. Kagawa
Background: Serum folate levels are lower in TT homozygotes of the single-nucleotide polymorphism (rs1801133) of methylenetetrahydrofolate reductase (MTHFR) than in CC homozygotes and CT heterozygotes. Objective : To improve folate status, the genotype was notified to each subject to motivate them to eat more green-yellow vegetables. Design: Genotype, dietary folate intake, and blood biochemistry were determined and statistically analyzed for 404 subjects (109 males, mean 58.9 years; 295 females, mean 61.8 years). Their serum folate and total homocysteine (tHcy) concentrations were mea- sured before and after receiving nutritional guidance and genotype notification. Results: The frequencies of the CC, CT, and TT MTHFR genotypes were 35.4, 49.7, and 14.8%, respectively. TT homozygote participants significantly increased their intake of green-yellow vegetables (p < 0.01) and of food-derived folate (p < 0.05) following nutritional guidance. The increase in serum folate (p < 0.001) and the decrease in tHcy (p < 0.001) in TT homozygotes following nutritional guidance were more than twice that of the CC homozygote and CT heterozygote participants. An increase in broccoli, spinach and Komatsuna intake was observed following nutritional guidance, irrespective of the season. Conclusion: Genotype notification was effective in increasing the intake of green-yellow vegetables and in improving folate status in TT homozygote participants.
{"title":"Nutritional Guidance in Sakado Folate Project","authors":"Mayumi Yurimoto, M. Hiraoka, Mitsuyo Kageyama, Yoshiko Kontai, C. Nishijima, Kaori Sakamoto, Y. Kagawa","doi":"10.5772/INTECHOPEN.74396","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74396","url":null,"abstract":"Background: Serum folate levels are lower in TT homozygotes of the single-nucleotide polymorphism (rs1801133) of methylenetetrahydrofolate reductase (MTHFR) than in CC homozygotes and CT heterozygotes. Objective : To improve folate status, the genotype was notified to each subject to motivate them to eat more green-yellow vegetables. Design: Genotype, dietary folate intake, and blood biochemistry were determined and statistically analyzed for 404 subjects (109 males, mean 58.9 years; 295 females, mean 61.8 years). Their serum folate and total homocysteine (tHcy) concentrations were mea- sured before and after receiving nutritional guidance and genotype notification. Results: The frequencies of the CC, CT, and TT MTHFR genotypes were 35.4, 49.7, and 14.8%, respectively. TT homozygote participants significantly increased their intake of green-yellow vegetables (p < 0.01) and of food-derived folate (p < 0.05) following nutritional guidance. The increase in serum folate (p < 0.001) and the decrease in tHcy (p < 0.001) in TT homozygotes following nutritional guidance were more than twice that of the CC homozygote and CT heterozygote participants. An increase in broccoli, spinach and Komatsuna intake was observed following nutritional guidance, irrespective of the season. Conclusion: Genotype notification was effective in increasing the intake of green-yellow vegetables and in improving folate status in TT homozygote participants.","PeriodicalId":146970,"journal":{"name":"B Group Vitamins - Current Uses and Perspectives","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129677429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}