首页 > 最新文献

Cross Section of Stock Returns最新文献

英文 中文
Parametric Portfolio Policies: Exploiting Characteristics in the Cross Section of Equity Returns 参数化投资组合策略:利用股票收益横截面的特征
Pub Date : 2004-12-01 DOI: 10.2139/ssrn.661343
Michael W. Brandt, Pedro Santa-clara, Rossen Valkanov
We propose a novel approach to optimizing portfolios with large numbers of assets. We model directly the portfolio weight in each asset as a function of the asset’s characteristics. The coecients of this function are found by optimizing the investor’s average utility of the portfolio’s return over the sample period. Our approach is computationally simple, easily modified and extended, produces sensible portfolio weights, and oers robust performance in and out of sample. In contrast, the traditional approach of first modeling the joint distribution of returns and then solving for the corresponding optimal portfolio weights is not only dicult to implement for a large number of assets but also yields notoriously noisy and unstable results. Our approach also provides a new test of the portfolio choice implications of equilibrium asset pricing models. We present an empirical implementation for the universe of all stocks in the CRSP-Compustat dataset, exploiting the size, value, and momentum anomalies.
我们提出了一种新的方法来优化具有大量资产的投资组合。我们将每个资产的投资组合权重作为资产特征的函数直接建模。该函数的系数是通过优化投资者在样本期间的投资组合收益的平均效用来找到的。我们的方法计算简单,易于修改和扩展,产生合理的投资组合权重,并且在样本内外具有强大的性能。相比之下,传统的首先对收益的联合分布建模,然后求解相应的最优投资组合权重的方法不仅难以实现对大量资产,而且产生出了臭名昭著的噪声和不稳定的结果。我们的方法也为均衡资产定价模型的投资组合选择提供了新的检验。我们为CRSP-Compustat数据集中的所有股票提供了一个经验实现,利用了规模、价值和动量异常。
{"title":"Parametric Portfolio Policies: Exploiting Characteristics in the Cross Section of Equity Returns","authors":"Michael W. Brandt, Pedro Santa-clara, Rossen Valkanov","doi":"10.2139/ssrn.661343","DOIUrl":"https://doi.org/10.2139/ssrn.661343","url":null,"abstract":"We propose a novel approach to optimizing portfolios with large numbers of assets. We model directly the portfolio weight in each asset as a function of the asset’s characteristics. The coecients of this function are found by optimizing the investor’s average utility of the portfolio’s return over the sample period. Our approach is computationally simple, easily modified and extended, produces sensible portfolio weights, and oers robust performance in and out of sample. In contrast, the traditional approach of first modeling the joint distribution of returns and then solving for the corresponding optimal portfolio weights is not only dicult to implement for a large number of assets but also yields notoriously noisy and unstable results. Our approach also provides a new test of the portfolio choice implications of equilibrium asset pricing models. We present an empirical implementation for the universe of all stocks in the CRSP-Compustat dataset, exploiting the size, value, and momentum anomalies.","PeriodicalId":151069,"journal":{"name":"Cross Section of Stock Returns","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121463310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 418
期刊
Cross Section of Stock Returns
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1