首页 > 最新文献

China Journal of Bioinformatics最新文献

英文 中文
Long-memory ARFIMA model for DNA sequences of influenza A virus 甲型流感病毒DNA序列的长记忆ARFIMA模型
Pub Date : 2011-04-15 DOI: 10.7498/aps.60.048702
Liu Juan, Gao Jie
Influenza viruses are divided into three types: A, B and C. Among them, type A virus is the most virulent human pathogen and causes the most severe disease. In this paper, we propose a new time series model for influenza A virus DNA sequence, i.e.chaos game representation (CGR) radians series. The CGR coordinates are converted into a time series model, and a long-memory ARFIMA( p,d,q ) model is introduced to simulate the time series model. We select randomly 10 H1N1 sequences and 10 H3N2 sequences in analysis. we find in these data a remarkably long-range correlation and fit the model reasonably by ARFIMA (p,d,q) model, and also find that we can use different ARFIMA models to identify the two kinds of sequences, i.e. ARFIMA(0, d ,5) model and ARFIMA(1, d ,1) model that can identify H1N1 and H3N2 respectively.
流感病毒分为A型、B型和c型三种,其中A型病毒是毒性最强的人类病原体,引起的疾病最严重。本文提出了一种新的甲型流感病毒DNA序列时间序列模型——混沌博弈表示(CGR)弧度序列。将CGR坐标转换为时间序列模型,并引入长记忆ARFIMA(p,d,q)模型来模拟时间序列模型。随机选取10个H1N1序列和10个H3N2序列进行分析。我们在这些数据中发现了显著的长程相关性,并通过ARFIMA(p,d,q)模型对模型进行了合理的拟合,也发现我们可以使用不同的ARFIMA模型分别识别H1N1和H3N2两种序列,即ARFIMA(0, d, 5)模型和ARFIMA(1, d, 1)模型。
{"title":"Long-memory ARFIMA model for DNA sequences of influenza A virus","authors":"Liu Juan, Gao Jie","doi":"10.7498/aps.60.048702","DOIUrl":"https://doi.org/10.7498/aps.60.048702","url":null,"abstract":"Influenza viruses are divided into three types: A, B and C. Among them, type A virus is the most virulent human pathogen and causes the most severe disease. In this paper, we propose a new time series model for influenza A virus DNA sequence, i.e.chaos game representation (CGR) radians series. The CGR coordinates are converted into a time series model, and a long-memory ARFIMA( p,d,q ) model is introduced to simulate the time series model. We select randomly 10 H1N1 sequences and 10 H3N2 sequences in analysis. we find in these data a remarkably long-range correlation and fit the model reasonably by ARFIMA (p,d,q) model, and also find that we can use different ARFIMA models to identify the two kinds of sequences, i.e. ARFIMA(0, d ,5) model and ARFIMA(1, d ,1) model that can identify H1N1 and H3N2 respectively.","PeriodicalId":152943,"journal":{"name":"China Journal of Bioinformatics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127252330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
China Journal of Bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1