首页 > 最新文献

ORG: Adoption最新文献

英文 中文
Just a Few Seeds More: Value of Network Information for Diffusion 再多几个种子:网络信息的传播价值
Pub Date : 2018-04-01 DOI: 10.2139/ssrn.3062830
M. Akbarpour, Suraj Malladi, A. Saberi
Identifying the optimal set of individuals to first receive information ('seeds') in a social network is a widely-studied question in many settings, such as the diffusion of information, microfinance programs, and new technologies. Numerous studies have proposed various network-centrality based heuristics to choose seeds in a way that is likely to boost diffusion. Here we show that, for some frequently studied diffusion processes, randomly seeding s plus x individuals can prompt a larger cascade than optimally targeting the best s individuals, for a small x. We prove our results for large classes of random networks, but also show that they hold in simulations over several real-world networks. This suggests that the returns to collecting and analyzing network information to identify the optimal seeds may not be economically significant. Given these findings, practitioners interested in communicating a message to a large number of people may wish to compare the cost of network-based targeting to that of slightly expanding initial outreach.
在社会网络中确定首先接收信息(“种子”)的最优个体集是一个在许多环境中被广泛研究的问题,例如信息扩散,小额信贷计划和新技术。许多研究提出了各种基于网络中心性的启发式方法,以一种可能促进传播的方式选择种子。在这里,我们表明,对于一些经常研究的扩散过程,随机播种s + x个体可以提示比最佳目标s个体更大的级联,对于较小的x。我们证明了大型随机网络的结果,但也表明它们在几个现实世界网络的模拟中是有效的。这表明,收集和分析网络信息以确定最优种子的回报可能不具有经济意义。鉴于这些发现,对向大量人群传播信息感兴趣的从业者可能希望将基于网络的目标定位的成本与略微扩大初始外展的成本进行比较。
{"title":"Just a Few Seeds More: Value of Network Information for Diffusion","authors":"M. Akbarpour, Suraj Malladi, A. Saberi","doi":"10.2139/ssrn.3062830","DOIUrl":"https://doi.org/10.2139/ssrn.3062830","url":null,"abstract":"Identifying the optimal set of individuals to first receive information ('seeds') in a social network is a widely-studied question in many settings, such as the diffusion of information, microfinance programs, and new technologies. Numerous studies have proposed various network-centrality based heuristics to choose seeds in a way that is likely to boost diffusion. Here we show that, for some frequently studied diffusion processes, randomly seeding s plus x individuals can prompt a larger cascade than optimally targeting the best s individuals, for a small x. We prove our results for large classes of random networks, but also show that they hold in simulations over several real-world networks. This suggests that the returns to collecting and analyzing network information to identify the optimal seeds may not be economically significant. Given these findings, practitioners interested in communicating a message to a large number of people may wish to compare the cost of network-based targeting to that of slightly expanding initial outreach.","PeriodicalId":159122,"journal":{"name":"ORG: Adoption","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115256614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 51
The Spread of Innovations Through Social Learning 通过社会学习传播创新
Pub Date : 2005-12-01 DOI: 10.2139/ssrn.1024819
H. Young
Innovations often spread by the communication of information among potential adopters. In the marketing literature, the standard model of new product diffusion is generated by information contagion: agents adopt once they hear about the existence of the product from someone else. In social learning models, by contrast, an agent adopts only when the perceived advantage of the innovation - as revealed by the actions and experiences of prior adopters - exceeds a threshold determined by the agent's prior beliefs. We demonstrate that learning with heterogeneous priors generates adoption curves that have an analytically tractable, closed-form solution. Moreover there is a simple statistical test that discriminates between this type of process and a contagion model. Applied to Griliches' classic results on the adoption of hybrid corn, this test shows that learning with heterogeneous priors does a considerably better job of explaining the data than does the contagion model.
创新常常是通过潜在采用者之间的信息交流来传播的。在市场营销文献中,新产品扩散的标准模型是由信息传染产生的:代理人一旦从别人那里听到产品的存在就会采取行动。相比之下,在社会学习模型中,只有当创新的感知优势——由先前采用者的行为和经验所揭示——超过由代理人先前信念决定的阈值时,代理人才会采用。我们证明了具有异构先验的学习产生具有分析可处理的封闭形式解的采用曲线。此外,有一个简单的统计测试可以区分这种类型的过程和传染模型。应用于Griliches关于采用杂交玉米的经典结果,该测试表明,与传染模型相比,使用异质先验学习在解释数据方面做得更好。
{"title":"The Spread of Innovations Through Social Learning","authors":"H. Young","doi":"10.2139/ssrn.1024819","DOIUrl":"https://doi.org/10.2139/ssrn.1024819","url":null,"abstract":"Innovations often spread by the communication of information among potential adopters. In the marketing literature, the standard model of new product diffusion is generated by information contagion: agents adopt once they hear about the existence of the product from someone else. In social learning models, by contrast, an agent adopts only when the perceived advantage of the innovation - as revealed by the actions and experiences of prior adopters - exceeds a threshold determined by the agent's prior beliefs. We demonstrate that learning with heterogeneous priors generates adoption curves that have an analytically tractable, closed-form solution. Moreover there is a simple statistical test that discriminates between this type of process and a contagion model. Applied to Griliches' classic results on the adoption of hybrid corn, this test shows that learning with heterogeneous priors does a considerably better job of explaining the data than does the contagion model.","PeriodicalId":159122,"journal":{"name":"ORG: Adoption","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114837546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
期刊
ORG: Adoption
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1