Using the Computational methods, the interaction effect of Tyrosine Amino acid on Graphene was investigated. For this purpose, the Density Functional Theory (DFT ) in the ground state of 6-31G was used, and the interaction effects of Tyrosine on Graphene was investigated through attachment to three different base positions. Different parameters such as energy levels, the amount of Chemical Shift in different atoms, the amount of HOMO/LUMO was determined and related parameters like Electrophilicity scale, chemical hardness, Chemical potential, and the maximum amount of electronic charge transferred. The Graphene oxide has the capability to act as adrug nano carrier and also as a mixture with special electrical properties. The results of this investigation also show that the attachment of Tyrosine Amino acid, as an organic compound, to the chemical structure of Graphene can change these capabilities to a great extent and also increase the role that this mixture already plays in medical, Pharmaceutical, and electronic industries.
{"title":"The influence of Tyrozine on energetic property in Graphene Oxide: A DFT studies","authors":"R. Ahmadi, R. Soleymani","doi":"10.13005/OJC/300107","DOIUrl":"https://doi.org/10.13005/OJC/300107","url":null,"abstract":"Using the Computational methods, the interaction effect of Tyrosine Amino acid on Graphene was investigated. For this purpose, the Density Functional Theory (DFT ) in the ground state of 6-31G was used, and the interaction effects of Tyrosine on Graphene was investigated through attachment to three different base positions. Different parameters such as energy levels, the amount of Chemical Shift in different atoms, the amount of HOMO/LUMO was determined and related parameters like Electrophilicity scale, chemical hardness, Chemical potential, and the maximum amount of electronic charge transferred. The Graphene oxide has the capability to act as adrug nano carrier and also as a mixture with special electrical properties. The results of this investigation also show that the attachment of Tyrosine Amino acid, as an organic compound, to the chemical structure of Graphene can change these capabilities to a great extent and also increase the role that this mixture already plays in medical, Pharmaceutical, and electronic industries.","PeriodicalId":16760,"journal":{"name":"Journal of Physical & Theoretical Chemistry","volume":"372 1","pages":"201-208"},"PeriodicalIF":0.0,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82979863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}