Pub Date : 2019-10-11DOI: 10.14302/issn.2637-6075.jpae-19-3022
I. Inyang, Sylvester Chibueze Izah, Kesiena Desmond Okpogholor
This study assessed the effect of aluminum phosphide on transferases in liver and muscle of Parophiocephalus obscurus (with mean weight of 42.20±1.5 gSD and mean length of 16.50± cmSD, respectively). The fish were obtained from a private fish farm in Yenagoa Metropolis, Nigeria, and the fish was allowed acclimatized to laboratory condition for 7 days, and then exposed to sublethal concentrations (0.00mg/L, 4.20mg/L, 6.30mg/L and 8.40mg/L) of aluminum phosphide for 14 days. Renewal bioassay was adopted in this study. At the end of the experimental period, the fish was dissected and the muscle and liver were collected, processed and analyzed for alanine aminotransferase and aspartate aminotransferase using colorimetric method. Results of the phosphatase at 0.00mg/L, 4.20mg/L, 6.30mg/L and 8.40mg/L were 94.50±6.44µ/L, 134.47±15.27 µ/L, 106.47±9.21 µ/L and 31.00±3.46 µ/L, respectively (liver), 107.50±9.24, 92.00±6.93 µ/L, 116.50±8.95 µ/L and 146.33±9.33 µ/L respectively (muscle) for aspartate aminotransferase; and 40.00±1.15µ/L, 26.50±3.18µ/L, 14.50±2.02µ/L and 9.80±1.44 µ/L, respectively (liver) and 17.00±1.75µ/L, 8.50±0.87µ/L, 21.00±2.89µ/L and 5.50±0.87 µ/L, respectively (muscle) for alanine aminotransferase. Statistically, there were significant variations (p<0.05) among the various concentration in the transferances. In addition, at some concentration, there was significant variations (p<0.05) between the level of the transferases in the muscle and liver. The significant alteration observed in the various concentrations is an indication that aluminum phosphide is lethal to fish. Therefore, caution should be exercise during the use of aluminum phosphide near biological system.
{"title":"Impact of Aluminum Phosphide on the Transferases in Liver and muscle of Parophiocephalus obscurus","authors":"I. Inyang, Sylvester Chibueze Izah, Kesiena Desmond Okpogholor","doi":"10.14302/issn.2637-6075.jpae-19-3022","DOIUrl":"https://doi.org/10.14302/issn.2637-6075.jpae-19-3022","url":null,"abstract":"This study assessed the effect of aluminum phosphide on transferases in liver and muscle of Parophiocephalus obscurus (with mean weight of 42.20±1.5 gSD and mean length of 16.50± cmSD, respectively). The fish were obtained from a private fish farm in Yenagoa Metropolis, Nigeria, and the fish was allowed acclimatized to laboratory condition for 7 days, and then exposed to sublethal concentrations (0.00mg/L, 4.20mg/L, 6.30mg/L and 8.40mg/L) of aluminum phosphide for 14 days. Renewal bioassay was adopted in this study. At the end of the experimental period, the fish was dissected and the muscle and liver were collected, processed and analyzed for alanine aminotransferase and aspartate aminotransferase using colorimetric method. Results of the phosphatase at 0.00mg/L, 4.20mg/L, 6.30mg/L and 8.40mg/L were 94.50±6.44µ/L, 134.47±15.27 µ/L, 106.47±9.21 µ/L and 31.00±3.46 µ/L, respectively (liver), 107.50±9.24, 92.00±6.93 µ/L, 116.50±8.95 µ/L and 146.33±9.33 µ/L respectively (muscle) for aspartate aminotransferase; and 40.00±1.15µ/L, 26.50±3.18µ/L, 14.50±2.02µ/L and 9.80±1.44 µ/L, respectively (liver) and 17.00±1.75µ/L, 8.50±0.87µ/L, 21.00±2.89µ/L and 5.50±0.87 µ/L, respectively (muscle) for alanine aminotransferase. Statistically, there were significant variations (p<0.05) among the various concentration in the transferances. In addition, at some concentration, there was significant variations (p<0.05) between the level of the transferases in the muscle and liver. The significant alteration observed in the various concentrations is an indication that aluminum phosphide is lethal to fish. Therefore, caution should be exercise during the use of aluminum phosphide near biological system.","PeriodicalId":16836,"journal":{"name":"Journal of Plant and Animal Ecology","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83193204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-21DOI: 10.14302/ISSN.2637-6075.JPAE-19-2803
E. N. Ogamba, Embelemi Edure Charles, Sylvester Chibueze Izah
This study evaluated the phytoplankton community of Taylor creek from Polaku to Agbia between November 2013 and July 2014. Sampling was carried out in 12 locations along the stretch of the creek following standard protocol. The phytoplankton enumeration was done and identified accordingly. In all the 12 locations, 100 species of phytoplankton belonging to 14 taxonomic groups including Bacillariophyta (31 species), Chlorophyta (25 species), Pyrrophyta (4 species), Cyanophyta (17 species), Spermatophyta (9 species), Euglenophyta (3 species), Phaeophyta (1 species), Heterokontophyta (2 species), Myxophyta (1 species), Xanthophyta (1 species), Chrysophyta (2 species), Lycopodiophyta (1 species), Cryptophyta (1 species), Dinophyta (2 species). Bacillariophyta, Chlorophyta, Cyanophyta and Spermatophyta with occurrence rate of 36%, 34%, 10% and 10%, respectively were the predominant phytoplankton in the study area occurring in all the locations across the period of the study. The various species have some distinct environmental condition that enable them thrive in their niche, and this determines the structure of the phytoplankton in the study area. The diversity indices provided information about the distribution and health condition of the creek. The study showed significant relationships between Shannon-Wiener, Menhinick, Margalef, equitability and Fisher-alpha indices. The ecosystem showed moderate to heavy pollution based on Shannon Wiener index. There is the need for improved method of waste disposal and other anthropogenic activities being carried in and/ or within the creek.
本研究于2013年11月至2014年7月对Polaku至Agbia Taylor creek的浮游植物群落进行了评估。采样是按照标准程序在沿河流延伸的12个地点进行的。对浮游植物进行了计数和鉴定。12个测点共发现浮游植物100种,分属硅藻门(31种)、绿藻门(25种)、绿藻门(4种)、蓝藻门(17种)、植藻门(9种)、裸藻门(3种)、藻门(1种)、异藻门(2种)、粘藻门(1种)、黄藻门(1种)、绿藻门(2种)、石滩双藻门(1种)、隐藻门(1种)、藻门(2种)等14个类群。硅藻、绿藻、蓝藻和精子藻是研究区的优势浮游植物,发生率分别为36%、34%、10%和10%,在研究期间所有地点均有发生。不同种类的浮游植物有一些独特的环境条件,使它们能够在它们的生态位中茁壮成长,这决定了研究区域浮游植物的结构。多样性指数提供了河流分布和健康状况的信息。研究表明,Shannon-Wiener、Menhinick、Margalef、公平性和Fisher-alpha指数之间存在显著的相关关系。Shannon Wiener指数显示生态系统为中度至重度污染。有需要改善废物的处理方法,以及在河内或河内进行的其他人为活动。
{"title":"Phytoplankton Community of Taylor Creek in the Niger Delta Using Diversity Indices","authors":"E. N. Ogamba, Embelemi Edure Charles, Sylvester Chibueze Izah","doi":"10.14302/ISSN.2637-6075.JPAE-19-2803","DOIUrl":"https://doi.org/10.14302/ISSN.2637-6075.JPAE-19-2803","url":null,"abstract":"This study evaluated the phytoplankton community of Taylor creek from Polaku to Agbia between November 2013 and July 2014. Sampling was carried out in 12 locations along the stretch of the creek following standard protocol. The phytoplankton enumeration was done and identified accordingly. In all the 12 locations, 100 species of phytoplankton belonging to 14 taxonomic groups including Bacillariophyta (31 species), Chlorophyta (25 species), Pyrrophyta (4 species), Cyanophyta (17 species), Spermatophyta (9 species), Euglenophyta (3 species), Phaeophyta (1 species), Heterokontophyta (2 species), Myxophyta (1 species), Xanthophyta (1 species), Chrysophyta (2 species), Lycopodiophyta (1 species), Cryptophyta (1 species), Dinophyta (2 species). Bacillariophyta, Chlorophyta, Cyanophyta and Spermatophyta with occurrence rate of 36%, 34%, 10% and 10%, respectively were the predominant phytoplankton in the study area occurring in all the locations across the period of the study. The various species have some distinct environmental condition that enable them thrive in their niche, and this determines the structure of the phytoplankton in the study area. The diversity indices provided information about the distribution and health condition of the creek. The study showed significant relationships between Shannon-Wiener, Menhinick, Margalef, equitability and Fisher-alpha indices. The ecosystem showed moderate to heavy pollution based on Shannon Wiener index. There is the need for improved method of waste disposal and other anthropogenic activities being carried in and/ or within the creek.","PeriodicalId":16836,"journal":{"name":"Journal of Plant and Animal Ecology","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87745267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-18DOI: 10.14302/ISSN.2637-6075.JPAE-19-2779
O. A. Aghoghovwia, Preyo Isaac Morgan, Sylvester Chibueze Izah
This study evaluated the behavioural response and toxicity of paraquat dichloride to fingerlings of Clariasgariepinus. The fishes were acclimatized for 14 days and exposed to sublethal concentration of 0.00 ppm, 16.56 ppm, 22.08 ppm, 27.60 ppm, 33.12 ppm and 38.64 ppm. A 24 hours’ renewal bioassay was adopted in this study. Results showed that the fishes exhibited change in swimming, opercular movement, body pigmentation, surfacing and air gulping. Mortality rate increased significantly at p<0.05 as the concentration of the toxicant increased as well as the exposure period. LC50 values at 24, 48, 72 and 96 were 59.95, 47.59, 38.12 and 26.18ppm, respectively. Based on the results, Paraquat dichloride users need to discard the remains of empty cans properly to avoid contamination. Also there is need to exercise caution when using paraquat dichloride based herbicides in agricultural fields close to surface water resources.
{"title":"Behavioral Response and Acute Toxicity of Fingerlings of African Cat Fish, Clarias Gariepinus Exposed to Paraquat Dichloride","authors":"O. A. Aghoghovwia, Preyo Isaac Morgan, Sylvester Chibueze Izah","doi":"10.14302/ISSN.2637-6075.JPAE-19-2779","DOIUrl":"https://doi.org/10.14302/ISSN.2637-6075.JPAE-19-2779","url":null,"abstract":"This study evaluated the behavioural response and toxicity of paraquat dichloride to fingerlings of Clariasgariepinus. The fishes were acclimatized for 14 days and exposed to sublethal concentration of 0.00 ppm, 16.56 ppm, 22.08 ppm, 27.60 ppm, 33.12 ppm and 38.64 ppm. A 24 hours’ renewal bioassay was adopted in this study. Results showed that the fishes exhibited change in swimming, opercular movement, body pigmentation, surfacing and air gulping. Mortality rate increased significantly at p<0.05 as the concentration of the toxicant increased as well as the exposure period. LC50 values at 24, 48, 72 and 96 were 59.95, 47.59, 38.12 and 26.18ppm, respectively. Based on the results, Paraquat dichloride users need to discard the remains of empty cans properly to avoid contamination. Also there is need to exercise caution when using paraquat dichloride based herbicides in agricultural fields close to surface water resources.","PeriodicalId":16836,"journal":{"name":"Journal of Plant and Animal Ecology","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86661493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-02DOI: 10.14302/ISSN.2637-6075.JPAE-19-2586
H RadwanE, S YoussefN, O HashemH, M ShalabyA
Melia azedarach extract were applied by feeding the adult female flies on diets mixed with the extracts at different doses. The concentrations of Melia azedarach utilized were 1.8, 2.4 and 3.6%. The gonotrophic cycles of length of 90, 753, 67.6 and 84, 72, 68 hours were obtained after feeding at age 24 hours with diet mixed with doses of 1.8, 2.4 and 3.6% fruit extract; respectively. 98 & 96 hours were the length of gonotrophic cycle in the control groups. The length of 86.7, 72.3, 57.3 and 89.3, 75, 61 hours were obtained after feeding adults at age 48 hours with diets mixed with different doses of fruit extract of the same plant 97.3 and 98.7 hours were the length of the control groups. Proportions of the egg hatching reached 69, 55.3, 49 and 72.9, 64.2, 52 in groups of eggs obtained from 24 hours adults feeding with diets mixed with doses of 1.8, 2.4 and 3.6% fruit extract; respectively. Also 68.7, 53.3,48 5 and 81 2, 70, 56.3 were the proportions of egg hatching obtained from groups at age 48 hours after feeding with diets mixed with the same doses. 85, 77.6, 62.2 and 92.6, 88.9, 84.9 were the proportions of the egg hatching obtained from groups feeding with diets mixed with doses of 1.8, 2.4 and 3.6% fruit extract of Melia azedarach; respectively. The pupae showed larval-pupal intermediates which failed to complete the pupal period and died after emerging from the third larval instar.
{"title":"The Effects of Zanzalacht on the Gonotrophic cycle of the Adult House fly Musca Domestica","authors":"H RadwanE, S YoussefN, O HashemH, M ShalabyA","doi":"10.14302/ISSN.2637-6075.JPAE-19-2586","DOIUrl":"https://doi.org/10.14302/ISSN.2637-6075.JPAE-19-2586","url":null,"abstract":"Melia azedarach extract were applied by feeding the adult female flies on diets mixed with the extracts at different doses. The concentrations of Melia azedarach utilized were 1.8, 2.4 and 3.6%. The gonotrophic cycles of length of 90, 753, 67.6 and 84, 72, 68 hours were obtained after feeding at age 24 hours with diet mixed with doses of 1.8, 2.4 and 3.6% fruit extract; respectively. 98 & 96 hours were the length of gonotrophic cycle in the control groups. The length of 86.7, 72.3, 57.3 and 89.3, 75, 61 hours were obtained after feeding adults at age 48 hours with diets mixed with different doses of fruit extract of the same plant 97.3 and 98.7 hours were the length of the control groups. Proportions of the egg hatching reached 69, 55.3, 49 and 72.9, 64.2, 52 in groups of eggs obtained from 24 hours adults feeding with diets mixed with doses of 1.8, 2.4 and 3.6% fruit extract; respectively. Also 68.7, 53.3,48 5 and 81 2, 70, 56.3 were the proportions of egg hatching obtained from groups at age 48 hours after feeding with diets mixed with the same doses. 85, 77.6, 62.2 and 92.6, 88.9, 84.9 were the proportions of the egg hatching obtained from groups feeding with diets mixed with doses of 1.8, 2.4 and 3.6% fruit extract of Melia azedarach; respectively. The pupae showed larval-pupal intermediates which failed to complete the pupal period and died after emerging from the third larval instar.","PeriodicalId":16836,"journal":{"name":"Journal of Plant and Animal Ecology","volume":"201 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75734363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-02DOI: 10.14302/ISSN.2637-6075.JPAE-18-2336
E. Seiyaboh, Tariwari C. N Angaye
Environmental impact of anthropogenic activities from industrial sources, have become a threat to biodiversity. Water samples were collected from rivers around the flow station, and analysed from some physicochemical parameters and hydrocarbon contents. Result of the physicochemistry was reported for: pH (6.58± 0.04 - 6.76±0.01), conductivity (168.30±13.98 - 194.57±3.78 µS/cm), conductivity 8.29±0.04 - 10.66±0.02 NTU, salinity (0.07±0.00 - 0.09± 0.00 mg/l), and Total Solids (83.96±1.49 - 103.66±0.60mg/l). Other elemental analysis includes: sulphates (2.43±0.01 - 4.28 ±0.02 mg/l), nitrates (0.19±0.01 - 0.28±0.01 mg/l), carbonates (1.14±0.07 - 2.06±0.07 mg/l), calcium (8.45±0.10 - 11.70±0.25 mg/l), magnesium (1.14±0.07 - 2.56±0.03 mg/l), and sodium (4.37±0.15 - 5.62±0.03 mg/l). The values of THC and TPH were 0.92±0.08 - 1.51±0.03, and 0.37±0.13 - 0.76±0.07 mg/l respectively. Generally, the result indicated mild level of contamination in terms of Hydrocarbon contents. However, diagnostic data emerging for physicochemistry and some elemental property indicates the water is unfit for consumption. Notwithstanding, the order on contamination were reported as; downstream > midstream > upstream. Therefore this study concludes that there should be frequent monitoring of the recipient water bodies associated with the flow station in order to check anthropogenic activities, and conserve biodiversity.
{"title":"The Environmental Impact of Etelebou Flow Station In Surface Water of Gbarain, Bayelsa State, Nigeria","authors":"E. Seiyaboh, Tariwari C. N Angaye","doi":"10.14302/ISSN.2637-6075.JPAE-18-2336","DOIUrl":"https://doi.org/10.14302/ISSN.2637-6075.JPAE-18-2336","url":null,"abstract":"Environmental impact of anthropogenic activities from industrial sources, have become a threat to biodiversity. Water samples were collected from rivers around the flow station, and analysed from some physicochemical parameters and hydrocarbon contents. Result of the physicochemistry was reported for: pH (6.58± 0.04 - 6.76±0.01), conductivity (168.30±13.98 - 194.57±3.78 µS/cm), conductivity 8.29±0.04 - 10.66±0.02 NTU, salinity (0.07±0.00 - 0.09± 0.00 mg/l), and Total Solids (83.96±1.49 - 103.66±0.60mg/l). Other elemental analysis includes: sulphates (2.43±0.01 - 4.28 ±0.02 mg/l), nitrates (0.19±0.01 - 0.28±0.01 mg/l), carbonates (1.14±0.07 - 2.06±0.07 mg/l), calcium (8.45±0.10 - 11.70±0.25 mg/l), magnesium (1.14±0.07 - 2.56±0.03 mg/l), and sodium (4.37±0.15 - 5.62±0.03 mg/l). The values of THC and TPH were 0.92±0.08 - 1.51±0.03, and 0.37±0.13 - 0.76±0.07 mg/l respectively. Generally, the result indicated mild level of contamination in terms of Hydrocarbon contents. However, diagnostic data emerging for physicochemistry and some elemental property indicates the water is unfit for consumption. Notwithstanding, the order on contamination were reported as; downstream > midstream > upstream. Therefore this study concludes that there should be frequent monitoring of the recipient water bodies associated with the flow station in order to check anthropogenic activities, and conserve biodiversity.","PeriodicalId":16836,"journal":{"name":"Journal of Plant and Animal Ecology","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86186359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-02DOI: 10.14302/issn.2637-6075.jpae-18-2349
Sylvester Chibueze Izah
Nigeria is the world leading producer of cassava. During processing of gari from cassava tuber large volume of effluents are discharged in the environment which is toxic to the environment and some of its associated biota. This study evaluated the growth pattern of Saccharomyces cerevisiae in cassava mill effluents. The Saccharomyces cerevisiae was isolated from palm wine following standard microbiological procedure. The Saccharomyces cerevisiae was inoculated into the sterile effluents and incubated for 15 days. At every 3days interval, 1ml of the effluents was obtained from the medium and the population density determined. Results of the growth showed that the population of Saccharomyces cerevisiae were 0.00 x 106 cfu/ml at day 0 (without inoculum), which rose to 2.88 x 106 cfu/ml at day 3, 272.67 x 106 cfu/ml at day 12 and decline slightly at day 15 (13.57 x 106 cfu/ml). There was significant variations (P<0.05) among the various period of study. The study showed that the growth of Saccharomyces cerevisiae in the effluent was optimum at day 12, then after the density began to decline.
{"title":"Growth Pattern of Saccharomyces cerevisiae in Cassava Mill Effluents","authors":"Sylvester Chibueze Izah","doi":"10.14302/issn.2637-6075.jpae-18-2349","DOIUrl":"https://doi.org/10.14302/issn.2637-6075.jpae-18-2349","url":null,"abstract":"Nigeria is the world leading producer of cassava. During processing of gari from cassava tuber large volume of effluents are discharged in the environment which is toxic to the environment and some of its associated biota. This study evaluated the growth pattern of Saccharomyces cerevisiae in cassava mill effluents. The Saccharomyces cerevisiae was isolated from palm wine following standard microbiological procedure. The Saccharomyces cerevisiae was inoculated into the sterile effluents and incubated for 15 days. At every 3days interval, 1ml of the effluents was obtained from the medium and the population density determined. Results of the growth showed that the population of Saccharomyces cerevisiae were 0.00 x 106 cfu/ml at day 0 (without inoculum), which rose to 2.88 x 106 cfu/ml at day 3, 272.67 x 106 cfu/ml at day 12 and decline slightly at day 15 (13.57 x 106 cfu/ml). There was significant variations (P<0.05) among the various period of study. The study showed that the growth of Saccharomyces cerevisiae in the effluent was optimum at day 12, then after the density began to decline.","PeriodicalId":16836,"journal":{"name":"Journal of Plant and Animal Ecology","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83799476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-29DOI: 10.14302/ISSN.2637-6075.JPAE-18-2062
Taichi Fujii, Hirokazu Kawamoto, Tomoyasu Shirako, K. Ueno, M. Minami
Estimates of the genetic diversity of Large Japanese field mouse Apodemusspeciosus populations and identification of their plant food resources were conducted in an industrial green space, where were constructed on reclaimed land and belonged to the Aichi Refinery of Idemitsu Kosan Co., Ltd., in Aichi Prefecture, Japan. A total of six mitochondrial D-loop haplotypes were identified in 50 mice. Habitat condition with the highest number of captured individuals had abundant broad-leaved trees and understory vegetation. A minimum spanning network, which did not form a ring-shaped network, revealed that the hereditary population structure was weak. The low genetic diversity observed in the study area was thus attributed to isolation from other populations once the population in the study area by sea and road, which is more than 30 m wide. In order to identify which plant food resources were utilized by mice captured inside the industrial green space, partial chloroplast rbcL sequences were amplified by PCR from DNA extracted from 43 feces samples. Calculations of sample completeness curve revealed that 25 of the taxa identified in this study comprised approximately 90% of the food plant resources in the study area. Of the 21 plant families identified from the obtained rbcL sequences, members of the Rosaceae (28.0%), Fagaceae (17.2%), Lauraceae (14.2%) and Oleaceae (7.7%) were dominant. To ensure the continued survival of A. speciosuspopulation in this industrial green space would be to preferentially conserve plant species that are used as food resources by this species.
{"title":"Genetic Diversity of Large Japanese Field Mouse Apodemus speciosus Populations and Identification of their Food Plant Resources using DNA Barcoding in an Industrial Green Space","authors":"Taichi Fujii, Hirokazu Kawamoto, Tomoyasu Shirako, K. Ueno, M. Minami","doi":"10.14302/ISSN.2637-6075.JPAE-18-2062","DOIUrl":"https://doi.org/10.14302/ISSN.2637-6075.JPAE-18-2062","url":null,"abstract":"Estimates of the genetic diversity of Large Japanese field mouse Apodemusspeciosus populations and identification of their plant food resources were conducted in an industrial green space, where were constructed on reclaimed land and belonged to the Aichi Refinery of Idemitsu Kosan Co., Ltd., in Aichi Prefecture, Japan. A total of six mitochondrial D-loop haplotypes were identified in 50 mice. Habitat condition with the highest number of captured individuals had abundant broad-leaved trees and understory vegetation. A minimum spanning network, which did not form a ring-shaped network, revealed that the hereditary population structure was weak. The low genetic diversity observed in the study area was thus attributed to isolation from other populations once the population in the study area by sea and road, which is more than 30 m wide. In order to identify which plant food resources were utilized by mice captured inside the industrial green space, partial chloroplast rbcL sequences were amplified by PCR from DNA extracted from 43 feces samples. Calculations of sample completeness curve revealed that 25 of the taxa identified in this study comprised approximately 90% of the food plant resources in the study area. Of the 21 plant families identified from the obtained rbcL sequences, members of the Rosaceae (28.0%), Fagaceae (17.2%), Lauraceae (14.2%) and Oleaceae (7.7%) were dominant. To ensure the continued survival of A. speciosuspopulation in this industrial green space would be to preferentially conserve plant species that are used as food resources by this species.","PeriodicalId":16836,"journal":{"name":"Journal of Plant and Animal Ecology","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82999992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}