Yung-Peng Chang, Hsin-An Chen, Shih-Hsin Chang, Z. Pei, Chun-Nien Liu, P. Han, W. Cheng
Lidar, radar, optical imaging and ultrasonic are important environmental sensing technologies in the field of autonomous driving. Among them, the radar can perform long-distance sensing, however it is limited by the resolution and cannot distinguish objects. Optical images have clear object resolving power, but hardly to get distance information. Ultrasonic only detect objects that are in very short distances. Therefore, it is necessary to have a technique that can clearly distinguish the objects and get the object information such as speed and distance at medium-range (100-m) for autonomous driving scheme entering level 4 and level 5. The existing light technology in the autonomous driving is to place the Lidar module on the roof of a car and perform environment sensing in a rotating manner. Such technology has low sensing capability and is not conform to the development direction of the vehicle industry that not fulfill the demand of autonomous car. In contrast to Lidar module on the roof, placing the Lidar on the front of the car has many advantages, such as easy to collect dust, suffer water corrosion and difficult to set up the electrical system. Integrating the Lidar with headlight system is a feasible direction to solve the aforementioned problems. In this study, we will develop laser headlights system with Lidar module by integrating the optical system of Lidar into headlight a unit, in which the smart laser headlight was achieved by feedback control orders system. The laser headlight will focus on the development of smart headlights with laser as the light source. With the feedback of the system, it can control the car's light field, avoid high-reflection areas at night. The integrated Lidar module will develop a quasi-static optical scanning system with a wavelength of 1550 nm and embed it in the optical path of the laser headlight. By wavelength differences, the optical path of Lidar does not interfere with headlight and high quality optical data could be obtained. Despite adapting 905 nm as optical wavelength in the current technology, the 1550 nm wavelength selected by this study meets the safety regulations and will not cause damage to the human eye at night or during the day. In this study, we will develop a Lidar module attached to a 10W laser headlight for autonomous driving. The simulation and optical performance of integration of Lidar module with laser headlight will be presented.
{"title":"Integration of LiDAR with laser headlight for autonomous driving (Conference Presentation)","authors":"Yung-Peng Chang, Hsin-An Chen, Shih-Hsin Chang, Z. Pei, Chun-Nien Liu, P. Han, W. Cheng","doi":"10.1117/12.2526390","DOIUrl":"https://doi.org/10.1117/12.2526390","url":null,"abstract":"Lidar, radar, optical imaging and ultrasonic are important environmental sensing technologies in the field of autonomous driving. Among them, the radar can perform long-distance sensing, however it is limited by the resolution and cannot distinguish objects. Optical images have clear object resolving power, but hardly to get distance information. Ultrasonic only detect objects that are in very short distances. Therefore, it is necessary to have a technique that can clearly distinguish the objects and get the object information such as speed and distance at medium-range (100-m) for autonomous driving scheme entering level 4 and level 5.\u0000 The existing light technology in the autonomous driving is to place the Lidar module on the roof of a car and perform environment sensing in a rotating manner. Such technology has low sensing capability and is not conform to the development direction of the vehicle industry that not fulfill the demand of autonomous car. In contrast to Lidar module on the roof, placing the Lidar on the front of the car has many advantages, such as easy to collect dust, suffer water corrosion and difficult to set up the electrical system. Integrating the Lidar with headlight system is a feasible direction to solve the aforementioned problems. In this study, we will develop laser headlights system with Lidar module by integrating the optical system of Lidar into headlight a unit, in which the smart laser headlight was achieved by feedback control orders system.\u0000 The laser headlight will focus on the development of smart headlights with laser as the light source. With the feedback of the system, it can control the car's light field, avoid high-reflection areas at night. The integrated Lidar module will develop a quasi-static optical scanning system with a wavelength of 1550 nm and embed it in the optical path of the laser headlight. By wavelength differences, the optical path of Lidar does not interfere with headlight and high quality optical data could be obtained. Despite adapting 905 nm as optical wavelength in the current technology, the 1550 nm wavelength selected by this study meets the safety regulations and will not cause damage to the human eye at night or during the day. In this study, we will develop a Lidar module attached to a 10W laser headlight for autonomous driving. The simulation and optical performance of integration of Lidar module with laser headlight will be presented.","PeriodicalId":169543,"journal":{"name":"ODS 2019: Industrial Optical Devices and Systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125149973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Lamon, Qiming Zhang, Yiming Wu, Xiaogang Liu, M. Gu
The huge volume of digital information generated across the world represents an insuperable challenge for the currently-available data storage devices and compels for the development of novel techniques and storage media. Nanomaterials, which have unique mechanical, electronic and optical properties owing to the strong confinement of electrons, photons and phonons at the nanoscale, are enabling the development of disruptive methods for optical data storage with ultra-high capacity, ultra-long lifetime and ultra-low energy consumption. In this context, upconversion nanoparticles, which feature the interesting property of photon upconversion and emit in a range from ultraviolet to near-infrared, have attracted considerable attention for optical data storage applications through the modulation of their upconversion fluorescence emission. However, it has been difficult to find an effective quencher for upconversion nanoparticles to entirely quench their anti-Stokes type of emission. Graphene oxide (GO) and reduced graphene oxide (r-GO) have proved useful as effective quenchers due to their strong broadband absorption. Herein, we demonstrate optical data storage in a GO and upconversion nanoparticles thin film. Core-shell nanoparticles were prepared via co-precipitation method and measurements of upconversion fluorescence emission intensity and fluorescence lifetime have been performed. Subsequently, the upconversion nanoparticles have been conjugated to GO and deposited through vacuum filtration to form a thin film. The nanocomposite was then irradiated using laser at different powers to produce the reduction of GO to r-GO. The encoded optical data bits were readout through the variation of fluorescence intensity from the upconversion nanoparticles accompanied by the reduction of the GO to r-GO.
{"title":"Optical data storage in a graphene oxide thin film integrated with upconversion nanoparticles\u0000 (Conference Presentation)","authors":"S. Lamon, Qiming Zhang, Yiming Wu, Xiaogang Liu, M. Gu","doi":"10.1117/12.2527233","DOIUrl":"https://doi.org/10.1117/12.2527233","url":null,"abstract":"The huge volume of digital information generated across the world represents an insuperable challenge for the currently-available data storage devices and compels for the development of novel techniques and storage media. Nanomaterials, which have unique mechanical, electronic and optical properties owing to the strong confinement of electrons, photons and phonons at the nanoscale, are enabling the development of disruptive methods for optical data storage with ultra-high capacity, ultra-long lifetime and ultra-low energy consumption. In this context, upconversion nanoparticles, which feature the interesting property of photon upconversion and emit in a range from ultraviolet to near-infrared, have attracted considerable attention for optical data storage applications through the modulation of their upconversion fluorescence emission. However, it has been difficult to find an effective quencher for upconversion nanoparticles to entirely quench their anti-Stokes type of emission. Graphene oxide (GO) and reduced graphene oxide (r-GO) have proved useful as effective quenchers due to their strong broadband absorption. Herein, we demonstrate optical data storage in a GO and upconversion nanoparticles thin film. Core-shell nanoparticles were prepared via co-precipitation method and measurements of upconversion fluorescence emission intensity and fluorescence lifetime have been performed. Subsequently, the upconversion nanoparticles have been conjugated to GO and deposited through vacuum filtration to form a thin film. The nanocomposite was then irradiated using laser at different powers to produce the reduction of GO to r-GO. The encoded optical data bits were readout through the variation of fluorescence intensity from the upconversion nanoparticles accompanied by the reduction of the GO to r-GO.","PeriodicalId":169543,"journal":{"name":"ODS 2019: Industrial Optical Devices and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129977203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}