首页 > 最新文献

Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz最新文献

英文 中文
InGaAsP/InP Geiger-mode APD-based LiDAR (Erratum) InGaAsP/InP盖革模式apd激光雷达(勘误)
Pub Date : 2020-05-28 DOI: 10.1117/12.2574715
Xudong Jiang, S. Wilton, I. Kudryashov, M. Itzler, M. Entwistle, Jack Kotelnikov, A. Katsnelson, Brian Piccione, M. Owens, K. Slomkowski, Scott C. Roszko, S. Rangwala
Publisher’s Note: This paper, originally published on 18 September 2018, was replaced with a corrected/revised version on 28 May 2020. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
发布者注:本文最初发表于2018年9月18日,于2020年5月28日被更正/修订版本所取代。如果您下载了原始PDF,但无法访问修订版本,请联系SPIE数字图书馆客户服务中心寻求帮助。
{"title":"InGaAsP/InP Geiger-mode APD-based LiDAR (Erratum)","authors":"Xudong Jiang, S. Wilton, I. Kudryashov, M. Itzler, M. Entwistle, Jack Kotelnikov, A. Katsnelson, Brian Piccione, M. Owens, K. Slomkowski, Scott C. Roszko, S. Rangwala","doi":"10.1117/12.2574715","DOIUrl":"https://doi.org/10.1117/12.2574715","url":null,"abstract":"Publisher’s Note: This paper, originally published on 18 September 2018, was replaced with a corrected/revised version on 28 May 2020. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.","PeriodicalId":170381,"journal":{"name":"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz","volume":"472 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132959402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
III-nitride nanowire photodetectors (Conference Presentation) 氮化纳米线光电探测器(会议报告)
Pub Date : 2018-09-18 DOI: 10.1117/12.2322128
A. Ajay, M. Spies, J. Lähnemann, J. Polaczyński, Martien I. den-Hertog, E. Monroy
{"title":"III-nitride nanowire photodetectors (Conference Presentation)","authors":"A. Ajay, M. Spies, J. Lähnemann, J. Polaczyński, Martien I. den-Hertog, E. Monroy","doi":"10.1117/12.2322128","DOIUrl":"https://doi.org/10.1117/12.2322128","url":null,"abstract":"","PeriodicalId":170381,"journal":{"name":"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz","volume":"451 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133781342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-chip and remote sensing with quantum cascade laser and detector systems (Conference Presentation) 基于量子级联激光和探测器系统的片上和遥感(会议报告)
Pub Date : 2018-09-18 DOI: 10.1117/12.2321253
G. Strasser, B. Schwarz, B. Hinkov, R. Szedlak, H. Detz, A. Andrews, W. Schrenk
{"title":"On-chip and remote sensing with quantum cascade laser and detector systems (Conference Presentation)","authors":"G. Strasser, B. Schwarz, B. Hinkov, R. Szedlak, H. Detz, A. Andrews, W. Schrenk","doi":"10.1117/12.2321253","DOIUrl":"https://doi.org/10.1117/12.2321253","url":null,"abstract":"","PeriodicalId":170381,"journal":{"name":"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129131149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective-area nanowire photodetectors: from near to mid-wavelength infrared (Conference Presentation) 选择性区域纳米线光电探测器:从近波长到中波长红外(会议报告)
Pub Date : 2018-09-18 DOI: 10.1117/12.2502113
D. Huffaker, D. Ren, K. M. Azizur-Rahman, Hyunseok Kim
Semiconductor nanowires are frequently highlighted as promising building blocks for next-generation optoelectronic devices. In this study, we explore infrared photodetectors based on selective-area nanowire arrays, spanning the wavelength spectrum from near-infrared (NIR) to mid-wavelength infrared (MWIR). Examples of these nanowire detectors include: NIR GaAs photodiodes, NIR InGaAs avalanche photodetectors (APDs), NIR InGaAs-GaAs single-photon photodiodes (SPADs), short-wavelength infrared (SWIR) InAs photodiodes, and MWIR InAsSb photodiodes. The small fill factor of nanowire arrays, i.e., the small junction area, is advantageous as it causes significant suppression of dark current, which further decreases the noise level and increases the detectivity. In addition, by utilizing metal nanostructures as 3D plasmonic gratings, we can enhance optical absorption in nanowires through excitation of surface plasmonic waves at metal-nanowire interfaces. Our work shows that, through proper design and fabrication, nanowire-based photodetectors can demonstrate equivalent or better performance compared to their planar device counterparts.
半导体纳米线经常被强调为下一代光电器件的有前途的构建模块。在这项研究中,我们探索了基于选择性面积纳米线阵列的红外光电探测器,其波长范围从近红外(NIR)到中波长红外(MWIR)。这些纳米线探测器的例子包括:近红外GaAs光电二极管,近红外InGaAs雪崩光电探测器(APDs),近红外InGaAs-GaAs单光子光电二极管(spad),短波长红外(SWIR) InAs光电二极管和MWIR InAsSb光电二极管。纳米线阵列的填充系数小,即结面积小,这是有利的,因为它可以显著抑制暗电流,从而进一步降低噪声水平并提高探测性。此外,利用金属纳米结构作为三维等离子体光栅,我们可以通过在金属-纳米线界面处激发表面等离子体波来增强纳米线的光吸收。我们的工作表明,通过适当的设计和制造,基于纳米线的光电探测器可以表现出与平面器件相当或更好的性能。
{"title":"Selective-area nanowire photodetectors: from near to mid-wavelength infrared (Conference Presentation)","authors":"D. Huffaker, D. Ren, K. M. Azizur-Rahman, Hyunseok Kim","doi":"10.1117/12.2502113","DOIUrl":"https://doi.org/10.1117/12.2502113","url":null,"abstract":"Semiconductor nanowires are frequently highlighted as promising building blocks for next-generation optoelectronic devices. In this study, we explore infrared photodetectors based on selective-area nanowire arrays, spanning the wavelength spectrum from near-infrared (NIR) to mid-wavelength infrared (MWIR). Examples of these nanowire detectors include: NIR GaAs photodiodes, NIR InGaAs avalanche photodetectors (APDs), NIR InGaAs-GaAs single-photon photodiodes (SPADs), short-wavelength infrared (SWIR) InAs photodiodes, and MWIR InAsSb photodiodes. The small fill factor of nanowire arrays, i.e., the small junction area, is advantageous as it causes significant suppression of dark current, which further decreases the noise level and increases the detectivity. In addition, by utilizing metal nanostructures as 3D plasmonic gratings, we can enhance optical absorption in nanowires through excitation of surface plasmonic waves at metal-nanowire interfaces. Our work shows that, through proper design and fabrication, nanowire-based photodetectors can demonstrate equivalent or better performance compared to their planar device counterparts.","PeriodicalId":170381,"journal":{"name":"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133834113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nanostructured epitaxial graphene for ultra-broadband optoelectronic detectors (Conference Presentation) 用于超宽带光电探测器的纳米结构外延石墨烯(会议报告)
Pub Date : 2018-09-18 DOI: 10.1117/12.2321313
A. Fatimy, Luke St. Marie, A. Nath, B. Kong, A. Boyd, R. Myers-Ward, K. Daniels, M. M. Jadidi, T. Murphy, D. K. Gaskill, P. Barbara
Atomically thin materials like semimetallic graphene and semiconducting transition metal dichalcogenides (TMDs) are an ideal platform for ultra-thin optoelectronic devices due to their direct bandgap (for monolayer thickness) and their considerable light absorption. For devices based on semiconducting TMDs, light detection occurs by optical excitation of charge carriers above the bandgap. For gapless graphene, light absorption causes a large increase in electron temperature, because of its small electronic heat capacity and weak electron-phonon coupling, making it suitable for hot-electron detectors. Here we show that, by nanostructuring graphene into quantum dots, we can exploit quantum confinement to achieve hot-electron bolometric detection. The graphene quantum dots are patterned from epitaxial graphene on SiC, with dot diameter ranging from 30 nm to 700 nm [1]. Nanostructuring greatly increases the temperature dependence of the electrical resistance, yielding detectors with extraordinary performance (responsivities of 1 × 10^(10) V W^(−1) and electrical noise-equivalent power, ∼2 × 10^(−16) W Hz^(−1/2) at 2.5 K). We will discuss how the dynamics of the charge carriers, namely the hot-electron cooling, affects the device operation and its power dependence. These detectors work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation [2], with a design that is easily scalable for detector arrays. [1] El Fatimy, A. et al. , "Epitaxial graphene quantum dots for high-performance terahertz bolometers," Nature Nanotechnology 11, 335-338 (2016).[2] El Fatimy, A. et al. , "Ultra-broadband photodetectors based on epitaxial graphene quantum dots" Nanophotonics (2018).
原子薄材料,如半金属石墨烯和半导体过渡金属二硫族化合物(TMDs),由于其直接带隙(单层厚度)和可观的光吸收,是超薄光电器件的理想平台。对于基于半导体tmd的器件,光探测是通过光激发带隙以上的载流子来实现的。对于无间隙石墨烯,由于其电子热容量小,电子-声子耦合弱,因此光吸收导致电子温度大幅升高,适合用于热电子探测器。在这里,我们表明,通过纳米结构的石墨烯成量子点,我们可以利用量子约束来实现热电子辐射检测。石墨烯量子点是由外延石墨烯在碳化硅上制成的,其点直径从30 nm到700 nm不等。纳米结构极大地增加了电阻的温度依赖性,产生了具有非凡性能的探测器(响应率为1 × 10^(10) V W^(−1)和电噪声等效功率,在2.5 K时为~ 2 × 10^(−16)W Hz^(−1/2))。我们将讨论电荷载流子的动力学,即热电子冷却,如何影响器件工作及其功率依赖性。这些探测器工作在非常宽的光谱范围内,从太赫兹到电信到紫外线辐射[2],其设计很容易扩展到探测器阵列。[1] El Fatimy, A.等,“高性能太赫兹辐射热计的外延石墨烯量子点”,自然纳米技术11,335-338 (2016).El Fatimy, A. et al.,“基于外延石墨烯量子点的超宽带光电探测器”纳米光子学(2018)。
{"title":"Nanostructured epitaxial graphene for ultra-broadband optoelectronic detectors (Conference Presentation)","authors":"A. Fatimy, Luke St. Marie, A. Nath, B. Kong, A. Boyd, R. Myers-Ward, K. Daniels, M. M. Jadidi, T. Murphy, D. K. Gaskill, P. Barbara","doi":"10.1117/12.2321313","DOIUrl":"https://doi.org/10.1117/12.2321313","url":null,"abstract":"Atomically thin materials like semimetallic graphene and semiconducting transition metal dichalcogenides (TMDs) are an ideal platform for ultra-thin optoelectronic devices due to their direct bandgap (for monolayer thickness) and their considerable light absorption. For devices based on semiconducting TMDs, light detection occurs by optical excitation of charge carriers above the bandgap. For gapless graphene, light absorption causes a large increase in electron temperature, because of its small electronic heat capacity and weak electron-phonon coupling, making it suitable for hot-electron detectors. Here we show that, by nanostructuring graphene into quantum dots, we can exploit quantum confinement to achieve hot-electron bolometric detection. The graphene quantum dots are patterned from epitaxial graphene on SiC, with dot diameter ranging from 30 nm to 700 nm [1]. Nanostructuring greatly increases the temperature dependence of the electrical resistance, yielding detectors with extraordinary performance (responsivities of 1 × 10^(10) V W^(−1) and electrical noise-equivalent power, ∼2 × 10^(−16) W Hz^(−1/2) at 2.5 K). We will discuss how the dynamics of the charge carriers, namely the hot-electron cooling, affects the device operation and its power dependence. These detectors work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation [2], with a design that is easily scalable for detector arrays. \u0000\u0000\u0000[1] El Fatimy, A. et al. , \"Epitaxial graphene quantum dots for high-performance terahertz bolometers,\" Nature Nanotechnology 11, 335-338 (2016).\u0000\u0000[2] El Fatimy, A. et al. , \"Ultra-broadband photodetectors based on epitaxial graphene quantum dots\" Nanophotonics (2018).","PeriodicalId":170381,"journal":{"name":"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132501799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1