Yitao Zheng, Fu Gu, Zheng Wang, Yun Zhou, Liqiang Xu, Philip Hall
Lightweight polypropylene (PP) composites with high flame retardancy and high thermal stability were required for automobile, electrical and electronic applications. Aluminum hydroxide (Al(OH)3) and two hollow glass beads (HGB) were selected as fillers for polypropylene composite fabrication. The incorporation of 10 wt% HGB (iM30K) into the PP matrix leads to a 3.5% density reduction, and 10 wt% Al(OH)3 increased the density by 5.4%. The cone calorimeter test (CCT) showed the lowest PHRR of 536.6 kW/m2 and peak smoke production rate of 0.061 m2/s was recorded for 10 wt% HGB (iM30K) loading. The formulation with 10 wt% Al(OH)3 loading had the lowest flammability; however, the Al(OH)3 content was not sufficient for a consistent flame‐resistant performance. The incorporation of HGB and Al(OH)3 resulted in an enhancement of both tensile and flexural modulus; however, it was observed that the tensile, flexural, and impact strengths exhibited a decrement with an increase in the concentration of HGB or Al(OH)3. Moreover, the thermogravimetric analysis (TGA) results indicated that at the same filler content, HGB (S60HS) filled PP composites have the highest thermal stability among the prepared composites.HighlightsEffects of HGB and Al(OH)3 on flame retardancy and thermal stability of PP.Small size HGB (iM30K) exhibited superior smoke suppression performance.Effects of HGB on density reduction of PP based composites.Mechanical properties of HGB or Al(OH)3 filled PP were investigated.The SEM images revealed the breakage and dispersion of HGB in the composites.
{"title":"A comparative study on the mechanical and flammability properties of aluminum hydroxide and hollow glass beads‐filled polypropylene composites","authors":"Yitao Zheng, Fu Gu, Zheng Wang, Yun Zhou, Liqiang Xu, Philip Hall","doi":"10.1002/vnl.22164","DOIUrl":"https://doi.org/10.1002/vnl.22164","url":null,"abstract":"<jats:label/>Lightweight polypropylene (PP) composites with high flame retardancy and high thermal stability were required for automobile, electrical and electronic applications. Aluminum hydroxide (Al(OH)<jats:sub>3</jats:sub>) and two hollow glass beads (HGB) were selected as fillers for polypropylene composite fabrication. The incorporation of 10 wt% HGB (iM30K) into the PP matrix leads to a 3.5% density reduction, and 10 wt% Al(OH)<jats:sub>3</jats:sub> increased the density by 5.4%. The cone calorimeter test (CCT) showed the lowest PHRR of 536.6 kW/m<jats:sup>2</jats:sup> and peak smoke production rate of 0.061 m<jats:sup>2</jats:sup>/s was recorded for 10 wt% HGB (iM30K) loading. The formulation with 10 wt% Al(OH)<jats:sub>3</jats:sub> loading had the lowest flammability; however, the Al(OH)<jats:sub>3</jats:sub> content was not sufficient for a consistent flame‐resistant performance. The incorporation of HGB and Al(OH)<jats:sub>3</jats:sub> resulted in an enhancement of both tensile and flexural modulus; however, it was observed that the tensile, flexural, and impact strengths exhibited a decrement with an increase in the concentration of HGB or Al(OH)<jats:sub>3</jats:sub>. Moreover, the thermogravimetric analysis (TGA) results indicated that at the same filler content, HGB (S60HS) filled PP composites have the highest thermal stability among the prepared composites.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Effects of HGB and Al(OH)<jats:sub>3</jats:sub> on flame retardancy and thermal stability of PP.</jats:list-item> <jats:list-item>Small size HGB (iM30K) exhibited superior smoke suppression performance.</jats:list-item> <jats:list-item>Effects of HGB on density reduction of PP based composites.</jats:list-item> <jats:list-item>Mechanical properties of HGB or Al(OH)<jats:sub>3</jats:sub> filled PP were investigated.</jats:list-item> <jats:list-item>The SEM images revealed the breakage and dispersion of HGB in the composites.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
At present, multilayer composite film is attractive in the production of biodegradable films due to its essential film properties. The current study mainly focused on overcoming the problems of poor water barrier and mechanical strength observed in monolayer films (SA‐CMC and G/SA‐CMC) made from gluten (G), sodium alginate (SA), and carboxymethylcellulose (CMC). The film was developed with the addition of onion waste extracts (OWEs), primarily from peel and stalk, to enhance functional properties. The multilayer composite film consists of three layers: an outer layer made of G, an inner layer made of SA, CMC, and a middle layer made of G/SA‐CMC. The developed composite film exhibited improved physical properties (thickness: 0.348–0.629 mm and moisture: 20.889%–21.403%), mechanical properties (tensile strength: 21.943–20.640 MPa), and barrier properties (WVP: 0.212–0.516 g/m.s.Pa × 10−14) compared to monolayer films (SA‐CMC and G/SA‐CMC). The addition of OWEs enhanced the multilayer film's phenolic (20.076 and 36.175 mgGAE/g) and antioxidant activity (73.850% and 42.667%). The study found that the multilayer control film had minimal changes in weight loss (9.75% ± 0.18%) and firmness (6.68 ± 0.64 N) compared to OWEs‐added films (9.93% ± 0.49–10.02% ± 0.14% and 6.61 ± 0.37 to 6.64 ± 0.18 N). However, fresh‐peeled shallot onion packed with control film exhibited higher bacterial counts (6.70 ± 0.42 CFU/g) and yeast and mold counts (5.08 ± 0.20 CFU/g) than those packed with the OWEs‐added film (6.49 ± 0.28–6.56 ± 0.27 CFU/g and 4.75 ± 0.18–4.89 ± 0.21 CFU/g), indicating that OWEs protect the onions from microbial degradation. Overall, the multilayer control film (without OWEs) showed better results for storing the fresh‐peeled shallot onion at 4°C for 21 days.HighlightsOnion waste extracts have potent high antioxidant and antimicrobial propertiesMultilayer film's physical, mechanical, barrier, and functional properties improvedAddition of onion waste extracts increased the film's antimicrobial activityControl film showed a better effect for storing fresh‐peeled shallot onionDeveloped film can store fresh‐peeled shallot onion for 21 days at 4°C.
{"title":"Development of multilayer composite film based on protein‐polysaccharides with the addition of onion waste extracts and their impact on the shallot quality","authors":"P. Thivya, N. Bhanu Prakash Reddy, V. R. Sinija","doi":"10.1002/vnl.22163","DOIUrl":"https://doi.org/10.1002/vnl.22163","url":null,"abstract":"<jats:label/>At present, multilayer composite film is attractive in the production of biodegradable films due to its essential film properties. The current study mainly focused on overcoming the problems of poor water barrier and mechanical strength observed in monolayer films (SA‐CMC and G/SA‐CMC) made from gluten (G), sodium alginate (SA), and carboxymethylcellulose (CMC). The film was developed with the addition of onion waste extracts (OWEs), primarily from peel and stalk, to enhance functional properties. The multilayer composite film consists of three layers: an outer layer made of G, an inner layer made of SA, CMC, and a middle layer made of G/SA‐CMC. The developed composite film exhibited improved physical properties (thickness: 0.348–0.629 mm and moisture: 20.889%–21.403%), mechanical properties (tensile strength: 21.943–20.640 MPa), and barrier properties (WVP: 0.212–0.516 g/<jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"http://m.s.pa\">m.s.Pa</jats:ext-link> × 10<jats:sup>−14</jats:sup>) compared to monolayer films (SA‐CMC and G/SA‐CMC). The addition of OWEs enhanced the multilayer film's phenolic (20.076 and 36.175 mgGAE/g) and antioxidant activity (73.850% and 42.667%). The study found that the multilayer control film had minimal changes in weight loss (9.75% ± 0.18%) and firmness (6.68 ± 0.64 N) compared to OWEs‐added films (9.93% ± 0.49–10.02% ± 0.14% and 6.61 ± 0.37 to 6.64 ± 0.18 N). However, fresh‐peeled shallot onion packed with control film exhibited higher bacterial counts (6.70 ± 0.42 CFU/g) and yeast and mold counts (5.08 ± 0.20 CFU/g) than those packed with the OWEs‐added film (6.49 ± 0.28–6.56 ± 0.27 CFU/g and 4.75 ± 0.18–4.89 ± 0.21 CFU/g), indicating that OWEs protect the onions from microbial degradation. Overall, the multilayer control film (without OWEs) showed better results for storing the fresh‐peeled shallot onion at 4°C for 21 days.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Onion waste extracts have potent high antioxidant and antimicrobial properties</jats:list-item> <jats:list-item>Multilayer film's physical, mechanical, barrier, and functional properties improved</jats:list-item> <jats:list-item>Addition of onion waste extracts increased the film's antimicrobial activity</jats:list-item> <jats:list-item>Control film showed a better effect for storing fresh‐peeled shallot onion</jats:list-item> <jats:list-item>Developed film can store fresh‐peeled shallot onion for 21 days at 4°C.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Çağrıalp Arslan, Ayşegül Erdem, Özkan Özmen, Ümit Tayfun, Mehmet Doğan
Lightweight and multifunctional carbon fiber‐reinforced composites with low production costs are crucial for aerospace and logistics applications. In this study, the integration of compatibilizer to polylactic acid (PLA)/thermoplastic polyurethane (TPU) blends filled with carbon fiber (CF) is performed due to cost‐lowering, besides enhanced mechanical performance and processability. Composite sample loaded with 30% CF is selected and optimized by the varied amount of polymeric MDI (pM) inclusions. As the tensile resistance of PLA/TPU/30CF and PLA/TPU/30CF/pM is compared, it is found that pM additions led to enhancements in tensile strength and tensile modulus. A total of 5% of pM inclusion results in 43% increament in tensile strength of the tensile strength of PLA/TPU/30CF. Similarly, the flexural modulus and flexural strength of composites are improved by a high amount of pM. The impact resistance of PLA significantly increases after CF inclusion. The incorporation of TPU and compatibilizer shifts impact strength to higher levels. 204% improvement is achieved for PLA/TPU blend involving 5 wt% of pM concerning unfilled PLA. According to the thermo‐mechanical analysis of composites, the presence of pM yields a higher elastic modulus for PLA/TPU/CF composites. Additionally, reductions in the glass transition temperature of PLA and composites are observed since the polymer gains ductility by elastomer and compatibilizer inclusions. Scanning electron microscopy (SEM) investigations of composites visualize these findings. Results postulated that pM integration can be utilized in large‐scale production of CF‐reinforced PLA‐TPU blend systems for cost reduction and performance improvement of composite parts in logistics and aerospace applications.HighlightsThe compatibilizing effect of pMDI on the PLA/TPU/CF blend system is investigated.pMDI inclusions yield improvement in the mechanical resistance of composites.CF‐reinforced PLA/TPU composites gain ductile behavior by the addition of TPU.The increase in elastic modulus ensures an efficient enhancement of compatibility.
{"title":"Short carbon fiber reinforced poly(lactic acid) and its thermoplastic polyurethane blends: The effect of carbon fiber, polyurethane, and compatibilizer amounts","authors":"Çağrıalp Arslan, Ayşegül Erdem, Özkan Özmen, Ümit Tayfun, Mehmet Doğan","doi":"10.1002/vnl.22160","DOIUrl":"https://doi.org/10.1002/vnl.22160","url":null,"abstract":"<jats:label/>Lightweight and multifunctional carbon fiber‐reinforced composites with low production costs are crucial for aerospace and logistics applications. In this study, the integration of compatibilizer to polylactic acid (PLA)/thermoplastic polyurethane (TPU) blends filled with carbon fiber (CF) is performed due to cost‐lowering, besides enhanced mechanical performance and processability. Composite sample loaded with 30% CF is selected and optimized by the varied amount of polymeric MDI (pM) inclusions. As the tensile resistance of PLA/TPU/30CF and PLA/TPU/30CF/pM is compared, it is found that pM additions led to enhancements in tensile strength and tensile modulus. A total of 5% of pM inclusion results in 43% increament in tensile strength of the tensile strength of PLA/TPU/30CF. Similarly, the flexural modulus and flexural strength of composites are improved by a high amount of pM. The impact resistance of PLA significantly increases after CF inclusion. The incorporation of TPU and compatibilizer shifts impact strength to higher levels. 204% improvement is achieved for PLA/TPU blend involving 5 wt% of pM concerning unfilled PLA. According to the thermo‐mechanical analysis of composites, the presence of pM yields a higher elastic modulus for PLA/TPU/CF composites. Additionally, reductions in the glass transition temperature of PLA and composites are observed since the polymer gains ductility by elastomer and compatibilizer inclusions. Scanning electron microscopy (SEM) investigations of composites visualize these findings. Results postulated that pM integration can be utilized in large‐scale production of CF‐reinforced PLA‐TPU blend systems for cost reduction and performance improvement of composite parts in logistics and aerospace applications.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The compatibilizing effect of pMDI on the PLA/TPU/CF blend system is investigated.</jats:list-item> <jats:list-item>pMDI inclusions yield improvement in the mechanical resistance of composites.</jats:list-item> <jats:list-item>CF‐reinforced PLA/TPU composites gain ductile behavior by the addition of TPU.</jats:list-item> <jats:list-item>The increase in elastic modulus ensures an efficient enhancement of compatibility.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat stabilizers are additives that are used to stabilize the chemical and physical properties of poly(vinyl chloride) (PVC) during high temperature processing and use. It is able to resist thermal degradation, prevent color change, maintain mechanical properties, and eliminate acid gas (HCl). Organometallic salts, such as zinc stearate (ZnSt2) and calcium stearate (CaSt2), are commonly used as heat stabilizers. There are not as many reports on bio‐based heat stabilizers. The effectiveness of a synthetic bio‐based molecule, epoxidized isosorbide linolenate (EGLA‐ISB), as a heat stabilizer for PVC was investigated in this article, and its performance was compared to the commonly used CaSt2/ZnSt2 heat stabilizers. The thermal stability of PVC films was observed to be higher when EGLA‐ISB was combined with epoxidized soybean oil (ESO) as the plasticizer. The PVC/30ESO/2EGLB‐ISB sample exhibited an initial decomposition temperature of 283.8°C and a minimal mass loss of 0.3% after a 120‐minute isothermal heat loss test at 200°C, indicating improved thermal stability. The incorporation of EGLA‐ISB into PVC films enhances mechanical properties through synergistic plasticization and stabilization, addressing the dispersibility issues of CaSt2/ZnSt2 that can diminish PVC's strength. The optical properties of PVC samples incorporating EGLA‐ISB are also superior. The plastics industry can move toward a more environmentally friendly and sustainable direction through the development of bio‐based heat stabilizers.HighlightsEGLA‐ISB/ESO boosts PVC thermal stability.EGLA‐ISB enhances PVC's mechanical properties.EGLA‐ISB PVC shows superior optical performance.EGLA‐ISB advances sustainable PVC industry.
{"title":"Synergistic effects of epoxidized isosorbide linolenate (EGLA‐ISB): A novel bio‐based heat stabilizer for enhanced mechanical and thermal performance of PVC","authors":"Yu Han, Wei Luo, Shiyan Sun, Yunxuan Weng, Caili Zhang","doi":"10.1002/vnl.22161","DOIUrl":"https://doi.org/10.1002/vnl.22161","url":null,"abstract":"<jats:label/>Heat stabilizers are additives that are used to stabilize the chemical and physical properties of poly(vinyl chloride) (PVC) during high temperature processing and use. It is able to resist thermal degradation, prevent color change, maintain mechanical properties, and eliminate acid gas (HCl). Organometallic salts, such as zinc stearate (ZnSt<jats:sub>2</jats:sub>) and calcium stearate (CaSt<jats:sub>2</jats:sub>), are commonly used as heat stabilizers. There are not as many reports on bio‐based heat stabilizers. The effectiveness of a synthetic bio‐based molecule, epoxidized isosorbide linolenate (EGLA‐ISB), as a heat stabilizer for PVC was investigated in this article, and its performance was compared to the commonly used CaSt<jats:sub>2</jats:sub>/ZnSt<jats:sub>2</jats:sub> heat stabilizers. The thermal stability of PVC films was observed to be higher when EGLA‐ISB was combined with epoxidized soybean oil (ESO) as the plasticizer. The PVC/30ESO/2EGLB‐ISB sample exhibited an initial decomposition temperature of 283.8°C and a minimal mass loss of 0.3% after a 120‐minute isothermal heat loss test at 200°C, indicating improved thermal stability. The incorporation of EGLA‐ISB into PVC films enhances mechanical properties through synergistic plasticization and stabilization, addressing the dispersibility issues of CaSt<jats:sub>2</jats:sub>/ZnSt<jats:sub>2</jats:sub> that can diminish PVC's strength. The optical properties of PVC samples incorporating EGLA‐ISB are also superior. The plastics industry can move toward a more environmentally friendly and sustainable direction through the development of bio‐based heat stabilizers.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>EGLA‐ISB/ESO boosts PVC thermal stability.</jats:list-item> <jats:list-item>EGLA‐ISB enhances PVC's mechanical properties.</jats:list-item> <jats:list-item>EGLA‐ISB PVC shows superior optical performance.</jats:list-item> <jats:list-item>EGLA‐ISB advances sustainable PVC industry.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The creation of a theoretical heat conduction model for polymers embedded with spherical inclusions is described in this study. It also contains the experimental confirmation of the suggested correlation for utilizing the model to estimate the effective thermal conductivity (K) of such composites. According to ASTM‐E‐1530, composites are made with varying amounts of aluminium oxide and pine wood dust reinforced in polyester resin. The effective thermal conductivities (Keff) of the composites are then determined using the Unitherm TM model 2022. Ansys 19.R2 software is used to evaluate the effective thermal conductivity of these composites with a uniform filler distribution, while Digimat‐FE software is used determine the thermal conductivity values of such particle filled polymer composites with a random filler distribution. After comparison and validation with experimental data, these values are shown to be fairly good agreement with the theoretical values from the suggested correlation. The investigation is further expanded to determine the thermal conductivities for epoxy composites using wood apple shell dust and coir dust particle. Also epoxy and polyester composites reinforced with SiO2 and TiO2 have been investigated in the similar manner. The main thrust of this report to validate the numerical results of composites by varying numerous polymers. The thermal conductivity all the composites grow monotonically with increase in filler content. The thermal conductivity of silicon dioxide, titanium oxide, and aluminium oxide filled epoxy composites is measured as 1.5, 7, and 35 W/m‐K respectively.HighlightsIn this study spherical fillers are successfully used as a potential filler material in polyester compositesThe thermal conductivity predicted by proposed mathematical model of polyester is validated with measured value and found better agreement.The Ansys 19.R2 and digimat software are used to predict the thermal conductivity values of these composites.The mathematical model is further used to predict thermal conductivity of epoxy composites to check the accuracy of the model.
{"title":"Effects of spherical fillers reinforcement on the efficacy of thermal conductivity in epoxy and polyester matrices: Experimental validation and prediction using finite element method","authors":"Priyabrat Pradhan, Abhilash Purohit, Hemalata Jena, Jayashree Singh, Bibhuti Bhusan Sahoo","doi":"10.1002/vnl.22159","DOIUrl":"https://doi.org/10.1002/vnl.22159","url":null,"abstract":"<jats:label/>The creation of a theoretical heat conduction model for polymers embedded with spherical inclusions is described in this study. It also contains the experimental confirmation of the suggested correlation for utilizing the model to estimate the effective thermal conductivity (<jats:italic>K</jats:italic>) of such composites. According to ASTM‐E‐1530, composites are made with varying amounts of aluminium oxide and pine wood dust reinforced in polyester resin. The effective thermal conductivities (<jats:italic>K</jats:italic><jats:sub>eff</jats:sub>) of the composites are then determined using the Unitherm TM model 2022. Ansys 19.R2 software is used to evaluate the effective thermal conductivity of these composites with a uniform filler distribution, while Digimat‐FE software is used determine the thermal conductivity values of such particle filled polymer composites with a random filler distribution. After comparison and validation with experimental data, these values are shown to be fairly good agreement with the theoretical values from the suggested correlation. The investigation is further expanded to determine the thermal conductivities for epoxy composites using wood apple shell dust and coir dust particle. Also epoxy and polyester composites reinforced with SiO<jats:sub>2</jats:sub> and TiO<jats:sub>2</jats:sub> have been investigated in the similar manner. The main thrust of this report to validate the numerical results of composites by varying numerous polymers. The thermal conductivity all the composites grow monotonically with increase in filler content. The thermal conductivity of silicon dioxide, titanium oxide, and aluminium oxide filled epoxy composites is measured as 1.5, 7, and 35 W/m‐K respectively.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>In this study spherical fillers are successfully used as a potential filler material in polyester composites</jats:list-item> <jats:list-item>The thermal conductivity predicted by proposed mathematical model of polyester is validated with measured value and found better agreement.</jats:list-item> <jats:list-item>The Ansys 19.R2 and digimat software are used to predict the thermal conductivity values of these composites.</jats:list-item> <jats:list-item>The mathematical model is further used to predict thermal conductivity of epoxy composites to check the accuracy of the model.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"281 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaban A. Darwish, Reham A. Abdel‐Monem, Samira T. Rabie, Mohamed Azab El‐Liethy, Bahaa A. Hemdan, Samir T. Gaballah
Synthesizing antimicrobial materials is a viable approach to combating microbes and mitigating their detrimental consequences on public health and economic domains. Here, we aim to design and synthesize hybrid polymers composed of poly(vinyl chloride) (PVC) and benzimidazole derivatives, in addition to evaluating their antimicrobial efficacy. PVC was chemically functionalized affording 4 conjugates where the benzimidazole motif was incorporated indirectly into the PVC through a triazole ring combined with a short linker. This functionalized PVC was synthesized by employing Cu azide–alkyne cycloaddition (CuAAC) conditions (click chemistry). The second functionalized PVC was synthesized by a nucleophilic substitution reaction to give 5, which has a benzimidazole moiety attached directly to the PVC via a short spacer arm. The benzimidazole derivatives and the corresponding benzimidazole‐PVC conjugates were investigated by elemental analysis and spectroscopic techniques (IR, NMR, and MS) as needed, besides UV–vis spectroscopy, x‐ray diffraction (XRD), and scanning electron microscopy (SEM) and energy dispersive x‐ray spectroscopy (EDX) in the case of the polymeric conjugates. The SEM morphology demonstrated a change in the PVC surface after the modification, showing spongy structures. Furthermore, the chemical characterization using EDX revealed peaks representing C, O, and N, in addition to the characteristic Cl peaks. The benzimidazole derivatives and the corresponding functionalized PVC were evaluated as antimicrobial agents against a variety of Gram‐negative and Gram‐positive bacteria and fungi strains utilizing the well diffusion assay. The data revealed an improvement in the antimicrobial activity of the functionalized PVC (4) that contained triazolobenzimidazole against pathogenic Escherichia coli and S. typhimurium.HighlightsMicrobes have negative impact on public health and economic domainsSynthesizing antimicrobial materials is a viable approach to combating microbesWe herein synthesized PVC/benzimidazole hybrid polymersFunctionalized PVC was synthesized and characterized by IR, NMR, SEM and EDXPVC/benzimidazole hybrids were evaluated as antimicrobial agents.
合成抗菌材料是对抗微生物并减轻其对公共卫生和经济领域造成的有害影响的可行方法。在此,我们旨在设计和合成由聚(氯乙烯)(PVC)和苯并咪唑衍生物组成的杂化聚合物,并评估其抗菌功效。对聚氯乙烯进行化学官能化处理后,得到了 4 种共轭物,其中苯并咪唑基团通过三唑环与短连接体间接结合到聚氯乙烯中。这种功能化聚氯乙烯是通过叠氮烷基铜环加成(CuAAC)条件(点击化学)合成的。第二种功能化聚氯乙烯是通过亲核取代反应合成的,得到了 5,其苯并咪唑分子通过一个短的间隔臂直接连接到聚氯乙烯上。除了紫外可见光谱、X 射线衍射(XRD)、扫描电子显微镜(SEM)以及聚合物共轭物的能量色散 X 射线光谱(EDX)之外,还根据需要使用元素分析和光谱技术(红外光谱、核磁共振和质谱)对苯并咪唑衍生物和相应的苯并咪唑-PVC 共轭物进行了研究。扫描电子显微镜形态显示,改性后的聚氯乙烯表面发生了变化,呈现海绵状结构。此外,利用 EDX 进行的化学特性分析显示,除了特征性的 Cl 峰外,还出现了代表 C、O 和 N 的峰值。苯并咪唑衍生物和相应的功能化聚氯乙烯被用作抗菌剂,利用井扩散试验对多种革兰氏阴性和革兰氏阳性细菌和真菌菌株进行了评估。数据显示,含有三唑苯并咪唑的功能化聚氯乙烯(4)对致病性大肠杆菌和伤寒杆菌的抗菌活性有所提高。亮点 微生物对公共卫生和经济领域产生了负面影响 合成抗菌材料是对抗微生物的一种可行方法 我们在此合成了聚氯乙烯/苯并咪唑杂化聚合物 合成了功能化聚氯乙烯,并通过红外光谱、核磁共振、扫描电镜和电离辐射显微镜对聚氯乙烯/苯并咪唑杂化聚合物进行了抗菌剂评估。
{"title":"Facile strategy for the synthesis of antimicrobial poly(vinyl chloride) functionalized with benzimidazole","authors":"Shaban A. Darwish, Reham A. Abdel‐Monem, Samira T. Rabie, Mohamed Azab El‐Liethy, Bahaa A. Hemdan, Samir T. Gaballah","doi":"10.1002/vnl.22158","DOIUrl":"https://doi.org/10.1002/vnl.22158","url":null,"abstract":"<jats:label/>Synthesizing antimicrobial materials is a viable approach to combating microbes and mitigating their detrimental consequences on public health and economic domains. Here, we aim to design and synthesize hybrid polymers composed of poly(vinyl chloride) (PVC) and benzimidazole derivatives, in addition to evaluating their antimicrobial efficacy. PVC was chemically functionalized affording 4 conjugates where the benzimidazole motif was incorporated indirectly into the PVC through a triazole ring combined with a short linker. This functionalized PVC was synthesized by employing Cu azide–alkyne cycloaddition (CuAAC) conditions (click chemistry). The second functionalized PVC was synthesized by a nucleophilic substitution reaction to give 5, which has a benzimidazole moiety attached directly to the PVC via a short spacer arm. The benzimidazole derivatives and the corresponding benzimidazole‐PVC conjugates were investigated by elemental analysis and spectroscopic techniques (IR, NMR, and MS) as needed, besides UV–vis spectroscopy, x‐ray diffraction (XRD), and scanning electron microscopy (SEM) and energy dispersive x‐ray spectroscopy (EDX) in the case of the polymeric conjugates. The SEM morphology demonstrated a change in the PVC surface after the modification, showing spongy structures. Furthermore, the chemical characterization using EDX revealed peaks representing C, O, and N, in addition to the characteristic Cl peaks. The benzimidazole derivatives and the corresponding functionalized PVC were evaluated as antimicrobial agents against a variety of Gram‐negative and Gram‐positive bacteria and fungi strains utilizing the well diffusion assay. The data revealed an improvement in the antimicrobial activity of the functionalized PVC (4) that contained triazolobenzimidazole against pathogenic <jats:italic>Escherichia coli</jats:italic> and <jats:italic>S. typhimurium</jats:italic>.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Microbes have negative impact on public health and economic domains</jats:list-item> <jats:list-item>Synthesizing antimicrobial materials is a viable approach to combating microbes</jats:list-item> <jats:list-item>We herein synthesized PVC/benzimidazole hybrid polymers</jats:list-item> <jats:list-item>Functionalized PVC was synthesized and characterized by IR, NMR, SEM and EDX</jats:list-item> <jats:list-item>PVC/benzimidazole hybrids were evaluated as antimicrobial agents.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadia Wan Azman, Masahiro Fujiwara, Norihide Enomoto, Azura A. Rashid
Carboxylated nitrile rubber (XNBR) gloves with sulfur crosslinked system consist of accelerators that pose a Type IV allergies problem with a risk to harm the health of the user. Alternative crosslinking system such as accelerator‐free (AF) crosslinker has been found and established to combat the health issues as replacement to the conventional crosslinker. This work emphasized the use of polycarbodiimide (PCDI) as a crosslinker, particularly PCDI with zinc oxide (ZnO) crosslink system. The effectiveness of PCDI as an AF crosslinker was compared with two conventional crosslink systems: sulfur with ZnO and ZnO only system. The swelling test results show the crosslink density of PCDI crosslink system achieved comparable value with conventional systems. It is expected that XNBR gloves with PCDI imposed superior mechanical and physical properties as sulfur system due to the formation of ionic crosslink resulting in much denser polymer network. The new PCDI crosslinker system offer cost reduction to gloves manufacturer as it can be cured at low temperatures from 60 to 80°C comparing to sulfur crosslinked system that normally cured at 140°C. PCDI offered a new generation of AF crosslinker in XNBR gloves with lower curing temperatures and to tackle health hazards, in place of the conventional crosslinker.HighlightsEmphasizes a significant change or improvement in the field of hand protection.Suggests that polycarbodiimide possesses distinctive qualities that set it apart from other materials.Highlights polycarbodiimide's effectiveness as a crosslinker without the need for accelerators, which are commonly used in rubber processingIndicates a novel approach to processing rubber gloves, potentially reducing energy consumption or enabling new applications.Specifies the type of gloves being discussed, indicating a focus on a specific material or product.
硫交联系统的羧基丁腈橡胶(XNBR)手套由促进剂组成,会造成 IV 型过敏问题,并有损害使用者健康的风险。为了解决这些健康问题,人们发现并确立了无促进剂(AF)交联剂等替代交联体系,以取代传统交联剂。这项工作强调使用聚碳二亚胺(PCDI)作为交联剂,特别是使用氧化锌(ZnO)交联体系的 PCDI。比较了 PCDI 作为 AF 交联剂与两种传统交联体系(硫与氧化锌交联体系和仅氧化锌交联体系)的有效性。溶胀测试结果表明,PCDI 交联体系的交联密度与传统体系相当。由于离子交联的形成使聚合物网络更加致密,因此使用 PCDI 的 XNBR 手套的机械和物理性能有望优于硫磺体系。与通常在 140°C 下固化的硫磺交联体系相比,新型 PCDI 交联剂体系可在 60 至 80°C 的低温下固化,从而降低了手套制造商的成本。PCDI 为 XNBR 手套提供了新一代 AF 交联剂,其固化温度更低,可取代传统交联剂,解决健康危害问题。表明聚碳二亚胺具有有别于其他材料的独特品质。强调聚碳二酰亚胺作为交联剂的功效,无需使用橡胶加工中常用的促进剂 指出加工橡胶手套的新方法,可降低能耗或实现新的应用。指明所讨论的手套类型,表明关注特定材料或产品。
{"title":"Revealing the unique characteristics and strength of polycarbodiimide as an accelerator‐free crosslinker for low‐temperature processing of carboxylated nitrile butadiene rubber gloves for hand protection","authors":"Nadia Wan Azman, Masahiro Fujiwara, Norihide Enomoto, Azura A. Rashid","doi":"10.1002/vnl.22151","DOIUrl":"https://doi.org/10.1002/vnl.22151","url":null,"abstract":"<jats:label/>Carboxylated nitrile rubber (XNBR) gloves with sulfur crosslinked system consist of accelerators that pose a Type IV allergies problem with a risk to harm the health of the user. Alternative crosslinking system such as accelerator‐free (AF) crosslinker has been found and established to combat the health issues as replacement to the conventional crosslinker. This work emphasized the use of polycarbodiimide (PCDI) as a crosslinker, particularly PCDI with zinc oxide (ZnO) crosslink system. The effectiveness of PCDI as an AF crosslinker was compared with two conventional crosslink systems: sulfur with ZnO and ZnO only system. The swelling test results show the crosslink density of PCDI crosslink system achieved comparable value with conventional systems. It is expected that XNBR gloves with PCDI imposed superior mechanical and physical properties as sulfur system due to the formation of ionic crosslink resulting in much denser polymer network. The new PCDI crosslinker system offer cost reduction to gloves manufacturer as it can be cured at low temperatures from 60 to 80°C comparing to sulfur crosslinked system that normally cured at 140°C. PCDI offered a new generation of AF crosslinker in XNBR gloves with lower curing temperatures and to tackle health hazards, in place of the conventional crosslinker.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Emphasizes a significant change or improvement in the field of hand protection.</jats:list-item> <jats:list-item>Suggests that polycarbodiimide possesses distinctive qualities that set it apart from other materials.</jats:list-item> <jats:list-item>Highlights polycarbodiimide's effectiveness as a crosslinker without the need for accelerators, which are commonly used in rubber processing</jats:list-item> <jats:list-item>Indicates a novel approach to processing rubber gloves, potentially reducing energy consumption or enabling new applications.</jats:list-item> <jats:list-item>Specifies the type of gloves being discussed, indicating a focus on a specific material or product.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the article, polyvinyl chloride/zeolite 4A/urea cyanurate composites (P/UCA‐Zlt) were designed and prepared by a melt intercalation method suitable for the manufacture of rigid products. To determine the structure and properties of this flame‐retardant system, thermal, flame retardancy, and mechanical behavior were tested by Fourier transform infrared analysis (FTIR) spectroscopy, field emission scanning electron microscopy (FE‐SEM), thermogravimetric analysis (TGA/DTG), thermal stability test, cone calorimetric test (CCT), and tensile analysis. Results showed that the composites, based on UCA‐Zlt, exhibited better flame retardancy, better HCl scavenger properties, improved mechanical properties, and reduced level of degradation compared with the pure polyvinyl chloride (PVC) at the optimum modification UCA (3 wt%)–Zlt (1%). TGA, indicated that the stability against heat influences of PVC was increased by adding UCA–Zlt which was evident by the increased thermal decomposition temperature. The CCT results of the PVC composites increased flame‐retardant properties. The PVC matrix composites improved the thermal stability time of PVC as the optimum value of 1 wt%. Moreover, the tensile strength of the composite containing UCA (3 wt%)–Zlt (1%) increased by 19.8% compared with those of neat PVC.HighlightsA strategy to design an FR‐additive from zeolite and urea cyanurate for PVC.Introduce a guide suitable for the thermal stability of PVC formulation.Effects of zeolite on thermal stability and flame retardancy of PVC.Introducing an optimal FR‐PVC system with improved mechanical properties.
{"title":"Synthesis, mechanical, thermal, and fire properties of poly(vinyl chloride) modified with a new flame retardant based on zeolite and urea cyanurate","authors":"Mahroo Khaleghi, Iliya Eslami","doi":"10.1002/vnl.22157","DOIUrl":"https://doi.org/10.1002/vnl.22157","url":null,"abstract":"<jats:label/>In the article, polyvinyl chloride/zeolite 4A/urea cyanurate composites (P/UCA‐Zlt) were designed and prepared by a melt intercalation method suitable for the manufacture of rigid products. To determine the structure and properties of this flame‐retardant system, thermal, flame retardancy, and mechanical behavior were tested by Fourier transform infrared analysis (FTIR) spectroscopy, field emission scanning electron microscopy (FE‐SEM), thermogravimetric analysis (TGA/DTG), thermal stability test, cone calorimetric test (CCT), and tensile analysis. Results showed that the composites, based on UCA‐Zlt, exhibited better flame retardancy, better HCl scavenger properties, improved mechanical properties, and reduced level of degradation compared with the pure polyvinyl chloride (PVC) at the optimum modification UCA (3 wt%)–Zlt (1%). TGA, indicated that the stability against heat influences of PVC was increased by adding UCA–Zlt which was evident by the increased thermal decomposition temperature. The CCT results of the PVC composites increased flame‐retardant properties. The PVC matrix composites improved the thermal stability time of PVC as the optimum value of 1 wt%. Moreover, the tensile strength of the composite containing UCA (3 wt%)–Zlt (1%) increased by 19.8% compared with those of neat PVC.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>A strategy to design an FR‐additive from zeolite and urea cyanurate for PVC.</jats:list-item> <jats:list-item>Introduce a guide suitable for the thermal stability of PVC formulation.</jats:list-item> <jats:list-item>Effects of zeolite on thermal stability and flame retardancy of PVC.</jats:list-item> <jats:list-item>Introducing an optimal FR‐PVC system with improved mechanical properties.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coated fabric is a composite textile consisting of fiber‐based cloth and surface coating. It features advantages such as lightweight, high strength, and multifunctionality, making it highly popular in architectural membrane structures. However, conventional coated fabrics have been facing bottlenecks such as short service life, difficult maintenance, and low dimensional stability. This paper introduces an innovative high‐performance PVC coated polyester named Flexlight Xtrem TX30, which possesses excellent longevity and durable aesthetics. The uniaxial tensile properties of three types of TX30 polyesters in the warp, weft, and 45° directions were comprehensively revealed through monotonic and cyclic tests. First, mono‐uniaxial tensile tests were performed on six specimens for each case. The failure characteristics were observed and strength at different angles was determined. Benefiting from the precontraint technology, the difference in strength between the warp and weft directions for TX30 is less than 5%. Second, uniaxial cyclic tensile tests were conducted on four specimens for each case. The initial tensile behavior exhibited the highest nonlinearity, with an R‐squared value greater than 0.999 for the cubic stress–strain relation. By the 15th cycle, the stiffness increment for all cases is less than 1%, indicating the attainment of material stabilization. Additionally, ratcheting effect and hysteresis loops were observed during the tests. The ratcheting strain and dissipated energy across different cases were thoroughly discussed and compared. In general, the experimental investigations in this study facilitate the understanding of the mechanical characteristics of the novel TX30 polyesters, providing insights for engineering applications and academic research.HighlightsThe uniaxial tensile properties of innovative TX30 polyesters were investigated.The failure mechanism and tensile strength at different angles were identified.The nonlinear stress–strain relations and cyclic material behaviors were determined.
{"title":"Experimental characterization for uniaxial tensile properties of high‐performance TX30 polyesters","authors":"Longlong Chen, Chengjun Gao, Wujun Chen","doi":"10.1002/vnl.22152","DOIUrl":"https://doi.org/10.1002/vnl.22152","url":null,"abstract":"<jats:label/>Coated fabric is a composite textile consisting of fiber‐based cloth and surface coating. It features advantages such as lightweight, high strength, and multifunctionality, making it highly popular in architectural membrane structures. However, conventional coated fabrics have been facing bottlenecks such as short service life, difficult maintenance, and low dimensional stability. This paper introduces an innovative high‐performance PVC coated polyester named Flexlight Xtrem TX30, which possesses excellent longevity and durable aesthetics. The uniaxial tensile properties of three types of TX30 polyesters in the warp, weft, and 45° directions were comprehensively revealed through monotonic and cyclic tests. First, mono‐uniaxial tensile tests were performed on six specimens for each case. The failure characteristics were observed and strength at different angles was determined. Benefiting from the precontraint technology, the difference in strength between the warp and weft directions for TX30 is less than 5%. Second, uniaxial cyclic tensile tests were conducted on four specimens for each case. The initial tensile behavior exhibited the highest nonlinearity, with an R‐squared value greater than 0.999 for the cubic stress–strain relation. By the 15th cycle, the stiffness increment for all cases is less than 1%, indicating the attainment of material stabilization. Additionally, ratcheting effect and hysteresis loops were observed during the tests. The ratcheting strain and dissipated energy across different cases were thoroughly discussed and compared. In general, the experimental investigations in this study facilitate the understanding of the mechanical characteristics of the novel TX30 polyesters, providing insights for engineering applications and academic research.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The uniaxial tensile properties of innovative TX30 polyesters were investigated.</jats:list-item> <jats:list-item>The failure mechanism and tensile strength at different angles were identified.</jats:list-item> <jats:list-item>The nonlinear stress–strain relations and cyclic material behaviors were determined.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano‐Fe2O3 is well known to has a synergistic effect with intumescent flame retardants in reducing the fire hazard of polymeric materials, but the role of nano‐Fe2O3 geometry on the synergistic effect of the intumescent system has not been thoroughly investigated. In this study, a series of pentaerythritol phosphate melamine salt (PPMS)‐grafted iron oxide with different crystal configurations (PPMS‐α‐Fe2O3 and PPMS‐γ‐Fe2O3) were successfully synthesized. The role of nano‐Fe2O3 geometry on the thermal stability, flame retardancy, and smoke suppression of intumescent flame‐retarded epoxy resins (EP) was investigated by thermogravimetric analysis, cone calorimeter test, and smoke density test. The results showed that PPMS‐α‐Fe2O3 flame retardant substantially improved the thermal stability and char formation of intumescent flame‐retarded EP compared to PPMS‐γ‐Fe2O3 flame retardant. Additionally, α‐Fe2O3 exerts a better role in improving the flame retardancy and smoke suppression properties compared to that of γ‐Fe2O3. It is notable that the incorporation of 5 wt% α‐Fe2O3 as a flame retardant confers a 78.9% reduction in peak heat release rate (PHRR) value and an 81.8% reduction in peak smoke production rate (PSPR) value compared to pure EP. Char residue analysis revealed that α‐Fe2O3 performs positively in enhancing the compactness of the char layer, thereby leading to an improved synergistic flame retardant effect.HighlightsSuccessful synthesis of flame retardants (PPMS‐α‐Fe2O3 and PPMS‐γ‐Fe2O3).α‐Fe2O3 and PPMS have superior synergistic flame retardant effect.α‐Fe2O3 remarkably enhances thermal stability and char formation of EP.Compared to γ‐Fe2O3, α‐Fe2O3 contributes more to the smoke suppression of EP.Designing improved EP fire performance based on the role of nano‐Fe2O3.
{"title":"The role of nano‐Fe2O3 crystal structure on the thermal stability, flame retardancy, and smoke suppression of intumescent flame‐retarded epoxy resins","authors":"Zheng Wei, Jingjing Guan, Long Yan, Guoqing Niu","doi":"10.1002/vnl.22155","DOIUrl":"https://doi.org/10.1002/vnl.22155","url":null,"abstract":"<jats:label/>Nano‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is well known to has a synergistic effect with intumescent flame retardants in reducing the fire hazard of polymeric materials, but the role of nano‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> geometry on the synergistic effect of the intumescent system has not been thoroughly investigated. In this study, a series of pentaerythritol phosphate melamine salt (PPMS)‐grafted iron oxide with different crystal configurations (PPMS‐α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and PPMS‐γ‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) were successfully synthesized. The role of nano‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> geometry on the thermal stability, flame retardancy, and smoke suppression of intumescent flame‐retarded epoxy resins (EP) was investigated by thermogravimetric analysis, cone calorimeter test, and smoke density test. The results showed that PPMS‐α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> flame retardant substantially improved the thermal stability and char formation of intumescent flame‐retarded EP compared to PPMS‐γ‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> flame retardant. Additionally, α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> exerts a better role in improving the flame retardancy and smoke suppression properties compared to that of γ‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. It is notable that the incorporation of 5 wt% α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> as a flame retardant confers a 78.9% reduction in peak heat release rate (PHRR) value and an 81.8% reduction in peak smoke production rate (PSPR) value compared to pure EP. Char residue analysis revealed that α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> performs positively in enhancing the compactness of the char layer, thereby leading to an improved synergistic flame retardant effect.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Successful synthesis of flame retardants (PPMS‐α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and PPMS‐γ‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>).</jats:list-item> <jats:list-item>α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and PPMS have superior synergistic flame retardant effect.</jats:list-item> <jats:list-item>α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> remarkably enhances thermal stability and char formation of EP.</jats:list-item> <jats:list-item>Compared to γ‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, α‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> contributes more to the smoke suppression of EP.</jats:list-item> <jats:list-item>Designing improved EP fire performance based on the role of nano‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>.</jats:list-item> </jats:list>","PeriodicalId":17473,"journal":{"name":"Journal of Vinyl and Additive Technology","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}