首页 > 最新文献

ChemRN: Electrochemical Engineering (Topic)最新文献

英文 中文
A Multifunctional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes 实现高效大面积钙钛矿发光二极管的多功能分子修饰剂
Pub Date : 1900-01-01 DOI: 10.2139/ssrn.3543834
Haoran Wang, Xiwen Gong, Dewei Zhao, Yong‐Biao Zhao, Sheng Wang, Jianfeng Zhang, Lingmei Kong, B. Wei, Rafael Quintero‐Bermudez, O. Voznyy, Yuequn Shang, Zhijun Ning, Yanfa Yan, E. Sargent, Xuyong Yang
With rapid progress in perovskite light-emitting diodes (PeLEDs), the electroluminescence performance of large-area perovskite devices is increasingly important. We investigate why large-area performance lags behind that achieved in laboratory-scale devices, and found that defects in perovskite films – emerging from thermal convection during solvent evaporation and electronic traps formed during perovskite crystallization – are chief causes. Here we report a molecular modification strategy that simultaneously eliminates pinholes in perovskite layers by controlling the dynamics of film formation, and passivates the defects in perovskites by incorporating Br species, thereby preventing shorts and non-radiative recombination. The molecular modifier 1,3,5-tris (bromomethyl) benzene (TBB) also modulates the electronic structure of injection/transport materials to achieve improved charge injection and balanced charge transport. As a result, we demonstrate a 20 mm × 20 mm green perovskite nanocrystal LED that achieves an external quantum efficiency (EQE) of over 16%, the record efficiency for large-area PeLEDs. Our work opens a route to scaling perovskite LEDs.
随着钙钛矿发光二极管(PeLEDs)的快速发展,大面积钙钛矿器件的电致发光性能越来越重要。我们研究了为什么大面积的性能落后于实验室规模的设备,并发现钙钛矿薄膜中的缺陷-在溶剂蒸发过程中产生的热对流和钙钛矿结晶过程中形成的电子陷阱-是主要原因。在这里,我们报告了一种分子修饰策略,通过控制薄膜形成的动力学来消除钙钛矿层中的针孔,并通过加入Br来钝化钙钛矿中的缺陷,从而防止短时间和非辐射复合。分子修饰剂1,3,5-三(溴乙基)苯(TBB)也能调节注入/输运材料的电子结构,从而改善电荷注入和平衡电荷输运。因此,我们展示了一个20mm × 20mm的绿色钙钛矿纳米晶体LED,实现了超过16%的外部量子效率(EQE),这是大面积pled的记录效率。我们的工作为扩展钙钛矿led开辟了一条道路。
{"title":"A Multifunctional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes","authors":"Haoran Wang, Xiwen Gong, Dewei Zhao, Yong‐Biao Zhao, Sheng Wang, Jianfeng Zhang, Lingmei Kong, B. Wei, Rafael Quintero‐Bermudez, O. Voznyy, Yuequn Shang, Zhijun Ning, Yanfa Yan, E. Sargent, Xuyong Yang","doi":"10.2139/ssrn.3543834","DOIUrl":"https://doi.org/10.2139/ssrn.3543834","url":null,"abstract":"With rapid progress in perovskite light-emitting diodes (PeLEDs), the electroluminescence performance of large-area perovskite devices is increasingly important. We investigate why large-area performance lags behind that achieved in laboratory-scale devices, and found that defects in perovskite films – emerging from thermal convection during solvent evaporation and electronic traps formed during perovskite crystallization – are chief causes. Here we report a molecular modification strategy that simultaneously eliminates pinholes in perovskite layers by controlling the dynamics of film formation, and passivates the defects in perovskites by incorporating Br species, thereby preventing shorts and non-radiative recombination. The molecular modifier 1,3,5-tris (bromomethyl) benzene (TBB) also modulates the electronic structure of injection/transport materials to achieve improved charge injection and balanced charge transport. As a result, we demonstrate a 20 mm × 20 mm green perovskite nanocrystal LED that achieves an external quantum efficiency (EQE) of over 16%, the record efficiency for large-area PeLEDs. Our work opens a route to scaling perovskite LEDs.","PeriodicalId":197761,"journal":{"name":"ChemRN: Electrochemical Engineering (Topic)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114494327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
ChemRN: Electrochemical Engineering (Topic)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1