首页 > 最新文献

IPAC 2019, Melbourne, Australia, May 19-24, 2019最新文献

英文 中文
SRF Cavity Fault Classification Using Machine Learning At CEBAF 基于机器学习的SRF空腔故障分类
Pub Date : 2019-05-01 DOI: 10.2172/1981326
A. Solopova, A. Carpenter, T. Powers, Y. Roblin, C. Tennant, L. Vidyaratne, K. Iftekharuddin
The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is the first large high power CW recirculating electron accelerator to make use of SRF accelerating structures. The structures are configured in two antiparallel linacs connected by arcs. Each linac consists of twenty C20/C50 cryomodules each containing eight 5-cell cavities and five C100 upgrade cryomodules each containing eight 7-cell cavities. Accurately classifying the source of cavity faults is critical for improving accelerator performance. A cavity fault triggers a waveform acquisition process where 17 waveform records sampled at 5 kHz are recorded for each of the 8 cavities in the affected cryomodule. The waveform record length is sufficiently long for transient microphonic effects to be observable. This data combined with archived signals sampled at 10 Hz are used to classify faults. Significant time is required for a subject matter expert to analyze and identify the intra-cavity signatures of imminent faults. This paper describes a path forward that utilizes machine learning for automatic fault classification. Post-training identification of the physical origins of faults are discussed, as are potential machinetrained model-free implementations of trip avoidance procedures. These methods should provide new insights into cavity fault mechanisms and facilitate intelligent optimization of cryomodule performance. DEFINITION OF THE PROBLEM The 12 GeV Upgrade for CEBAF was completed in September 2017. The project doubled the beam energy of the existing accelerator. To meet this energy goal, eleven new 100 MV cryomodules (called C100s) and RF systems were installed in 2013 (see Fig. 1) [1]. Currently the largest contributor to CEBAF downtime are beam trips caused by SRF cavities. During the last year there were an average of 6 RF trips an hour, accounting to roughly 15% of lost beam time per hour every day. To reduce the trip rate accelerating gradient of the cavity needs to be lowered, which means energy reach of CEBAF suffers. The cavities in a C100 cryomodule have strong cavity to cavity mechanical coupling. When one cavity trips off, the Lorentz force detuning causes vibrations in the cavity string that are sufficient to trip other cavities. In order to avoid trips, the entire string is switched to self-excited loop mode (frequency tracking) when one of the cavities trips and others become unstable. This is also the default response for various other off normal conditions, which makes it difficult to determine which cavity initiated the cascade of faults [2]. When a cavities trips off, it disrupts delivery of the beam to the experimental halls. Correctly classifying which of several known fault mechanisms caused the cavity to trip provides valuable information to control room operators on how to treat the offending cavity and ultimately helps to maintain greater beam availability to users [3]. Figure 1: Schematic of the CEBAF accelerator showing the locations of the
杰斐逊实验室的连续电子束加速器设施(CEBAF)是第一个使用SRF加速结构的大型大功率连续波循环电子加速器。结构被配置成两个反平行的直线,由圆弧连接。每台直线加速器由20个C20/C50冷模组组成,每个冷模组包含8个5胞腔,5个C100升级冷模组包含8个7胞腔。准确分类空腔故障源是提高加速器性能的关键。空腔故障触发波形采集过程,其中为受影响的低温模块中的8个空腔中的每个空腔记录以5 kHz采样的17个波形记录。波形记录长度足够长,可以观察到瞬态传声器效应。这些数据与以10hz采样的存档信号相结合,用于对故障进行分类。专家需要大量的时间来分析和识别即将发生的断层的空腔内特征。本文描述了一种利用机器学习进行自动故障分类的方法。讨论了故障物理根源的训练后识别,以及潜在的机器训练的免模型避免程序实现。这些方法将为研究空腔故障机制提供新的见解,并促进低温模块性能的智能优化。CEBAF的12gev升级于2017年9月完成。该项目将现有加速器的光束能量提高了一倍。为了实现这一能量目标,2013年安装了11个新的100 MV低温模块(称为c100)和射频系统(见图1)[1]。目前造成CEBAF停机时间最大的原因是由SRF空腔引起的光束跳闸。去年,平均每小时有6次射频行程,约占每天每小时损失波束时间的15%。为了降低脱扣率,需要降低空腔的加速梯度,这意味着CEBAF的能量到达受到影响。C100低温模块中的空腔具有强的腔间力学耦合。当一个空腔被绊倒时,洛伦兹力失谐会引起空腔弦的振动,足以绊倒其他空腔。为了避免跳闸,当其中一个空腔跳闸而其他空腔变得不稳定时,整个管柱切换到自激回路模式(频率跟踪)。这也是其他各种非正常情况下的默认响应,这使得很难确定是哪个空腔引发了故障级联[2]。当一个空腔脱落时,它会干扰光束到实验大厅的传输。正确地对几种已知故障机制中导致空腔跳闸的机制进行分类,可以为控制室操作员提供有关如何处理违规空腔的宝贵信息,并最终有助于为用户保持更大的光束可用性[3]。图1:CEBAF加速器的示意图,显示了记录空腔故障数据的11个C100低温模块的位置。使用故障识别和机器操作的一些例子说明了故障类型的快速识别在机器操作中是如何有用的:·快速淬火:识别空腔的快速“淬火”,其中空腔中存储的能量在比热淬火可能导致的时间短得多的时间内消散。这些事件在CEBAF操作中被确定为腔内的气体放电,存储的能量以10 μs数量级的时间转移到放电产生的电子上。当这些类型的事件发生在低温模块的第一个或最后一个空腔时,在束线离子泵中观察到压力爆发。在一些低温模块中,这些事件在数周无事件发生后开始每天发生多次,并且其梯度远低于先前确定的淬火梯度。这可以指示光束线中的气体负载或射频波导中从热到冷的转变。除了减少梯度的暂时缓解外,识别这种类型的故障可以表明真空问题或需要对低温模块进行热循环。___________________________________________ * 由杰斐逊科学Associates公司根据美国能源部合同号。DE-AC05-06OR23177†shabalin@jlab.org 10 Int。Partile加速器相依IPAC2019,墨尔本,澳大利亚JACoW出版ISBN: 978-3-95450-208-0 doi: 10.18429 / JACoW-IPAC2019-TUXXPLM2 MC7:加速器技术T07超导射频TUXXPLM2 1167公司nt en tf ro th w或k m ay是美国埃德联合国de rt他te rm所以他CC×3英尺。公共图书馆(©2019)。如果一个人把他的名字写下来,其中有一半是他的名字,一半是他的名字,一半是他的名字,一半是他的名字,一半是他的名字,一半是他的名字,还有他的名字
{"title":"SRF Cavity Fault Classification Using Machine Learning At CEBAF","authors":"A. Solopova, A. Carpenter, T. Powers, Y. Roblin, C. Tennant, L. Vidyaratne, K. Iftekharuddin","doi":"10.2172/1981326","DOIUrl":"https://doi.org/10.2172/1981326","url":null,"abstract":"The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is the first large high power CW recirculating electron accelerator to make use of SRF accelerating structures. The structures are configured in two antiparallel linacs connected by arcs. Each linac consists of twenty C20/C50 cryomodules each containing eight 5-cell cavities and five C100 upgrade cryomodules each containing eight 7-cell cavities. Accurately classifying the source of cavity faults is critical for improving accelerator performance. A cavity fault triggers a waveform acquisition process where 17 waveform records sampled at 5 kHz are recorded for each of the 8 cavities in the affected cryomodule. The waveform record length is sufficiently long for transient microphonic effects to be observable. This data combined with archived signals sampled at 10 Hz are used to classify faults. Significant time is required for a subject matter expert to analyze and identify the intra-cavity signatures of imminent faults. This paper describes a path forward that utilizes machine learning for automatic fault classification. Post-training identification of the physical origins of faults are discussed, as are potential machinetrained model-free implementations of trip avoidance procedures. These methods should provide new insights into cavity fault mechanisms and facilitate intelligent optimization of cryomodule performance. DEFINITION OF THE PROBLEM The 12 GeV Upgrade for CEBAF was completed in September 2017. The project doubled the beam energy of the existing accelerator. To meet this energy goal, eleven new 100 MV cryomodules (called C100s) and RF systems were installed in 2013 (see Fig. 1) [1]. Currently the largest contributor to CEBAF downtime are beam trips caused by SRF cavities. During the last year there were an average of 6 RF trips an hour, accounting to roughly 15% of lost beam time per hour every day. To reduce the trip rate accelerating gradient of the cavity needs to be lowered, which means energy reach of CEBAF suffers. The cavities in a C100 cryomodule have strong cavity to cavity mechanical coupling. When one cavity trips off, the Lorentz force detuning causes vibrations in the cavity string that are sufficient to trip other cavities. In order to avoid trips, the entire string is switched to self-excited loop mode (frequency tracking) when one of the cavities trips and others become unstable. This is also the default response for various other off normal conditions, which makes it difficult to determine which cavity initiated the cascade of faults [2]. When a cavities trips off, it disrupts delivery of the beam to the experimental halls. Correctly classifying which of several known fault mechanisms caused the cavity to trip provides valuable information to control room operators on how to treat the offending cavity and ultimately helps to maintain greater beam availability to users [3]. Figure 1: Schematic of the CEBAF accelerator showing the locations of the","PeriodicalId":212195,"journal":{"name":"IPAC 2019, Melbourne, Australia, May 19-24, 2019","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133554324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
IPAC 2019, Melbourne, Australia, May 19-24, 2019
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1