Pub Date : 2020-02-13DOI: 10.5772/intechopen.90121
A. Mikhailov, I. Vashlaev, M. Y. Kharitonova, M. L. Sviridova
The natural process of circulation of ground and atmospheric water through evaporation from the surface and precipitation from the atmosphere to the surface leads to colonization of the surface soil layer. The main source of salts in the soil is groundwater. Groundwater reaches the surface soil layer and evaporates, and its constituent salts accumulate in the soil. The concentration of salts on the surface can reach to 100% (crust). This process is widespread. Vast areas of solonetzes are located in deserts and semideserts of Asia, Australia, South America, northern Africa, and the western United States. This natural process can be applied in the field of extraction of natural resources from the bowels. The process of salting the soil surface is low and gradual and is subject to study for possible use in technological solutions for the extraction of minerals. In this chapter, the authors intend to show the beneficial advantages of the phenomenon of surface salinization of the soil layer. Water-soluble salts due to their high mobility allow directional mass transfer along the capillary system of the soil and deposition in the aeration zone. However, the utility does not belong to plant biota. This phenomenon can be effective and safely used in the creation of near-surface concentration zones. The natural process of the filtration upward of salt solutions from the depths of the massif to the surface will purposefully carry out the transfer of valuable components with deposition in the area of the evaporation barrier. The speed of the process of ascending capillary mass transfer is technologically low but rather suitable as a preparatory operation at the place of storage of industrial wastes and burials and in the formation of zones of high concentration of small substandard natural mineral deposits. The chapter presents the results of experimental studies of ascending mass transfer of useful components from the waste material of the concentrating production of nonferrous metals.
{"title":"Upward Capillary Mass Transfer as a Process for Growing Concentration Zones","authors":"A. Mikhailov, I. Vashlaev, M. Y. Kharitonova, M. L. Sviridova","doi":"10.5772/intechopen.90121","DOIUrl":"https://doi.org/10.5772/intechopen.90121","url":null,"abstract":"The natural process of circulation of ground and atmospheric water through evaporation from the surface and precipitation from the atmosphere to the surface leads to colonization of the surface soil layer. The main source of salts in the soil is groundwater. Groundwater reaches the surface soil layer and evaporates, and its constituent salts accumulate in the soil. The concentration of salts on the surface can reach to 100% (crust). This process is widespread. Vast areas of solonetzes are located in deserts and semideserts of Asia, Australia, South America, northern Africa, and the western United States. This natural process can be applied in the field of extraction of natural resources from the bowels. The process of salting the soil surface is low and gradual and is subject to study for possible use in technological solutions for the extraction of minerals. In this chapter, the authors intend to show the beneficial advantages of the phenomenon of surface salinization of the soil layer. Water-soluble salts due to their high mobility allow directional mass transfer along the capillary system of the soil and deposition in the aeration zone. However, the utility does not belong to plant biota. This phenomenon can be effective and safely used in the creation of near-surface concentration zones. The natural process of the filtration upward of salt solutions from the depths of the massif to the surface will purposefully carry out the transfer of valuable components with deposition in the area of the evaporation barrier. The speed of the process of ascending capillary mass transfer is technologically low but rather suitable as a preparatory operation at the place of storage of industrial wastes and burials and in the formation of zones of high concentration of small substandard natural mineral deposits. The chapter presents the results of experimental studies of ascending mass transfer of useful components from the waste material of the concentrating production of nonferrous metals.","PeriodicalId":21388,"journal":{"name":"Salt in the Earth","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83139622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-15DOI: 10.5772/intechopen.88716
Boopathy Ramasamy
The membrane treatment is a physical separation which also generates consid-erable amount of waste, called as reject/concentrate. The reject/concentrate is more than three times concentrated than the feed water in terms of feed water salts. Recovery of valuables from reverse osmosis (RO) reject for its reuse of inorganic salts would be most obvious solution to eliminate environmental damage. In this report what are the available methods for the recovery of valuables from waste saline stream by selective crystallization method, chemical precipitation and physico-thermal route discussed in details. Also, methods to treat organic contamination in the residual solution through advanced oxidation treatment methods.
{"title":"Short Review of Salt Recovery from Reverse Osmosis Rejects","authors":"Boopathy Ramasamy","doi":"10.5772/intechopen.88716","DOIUrl":"https://doi.org/10.5772/intechopen.88716","url":null,"abstract":"The membrane treatment is a physical separation which also generates consid-erable amount of waste, called as reject/concentrate. The reject/concentrate is more than three times concentrated than the feed water in terms of feed water salts. Recovery of valuables from reverse osmosis (RO) reject for its reuse of inorganic salts would be most obvious solution to eliminate environmental damage. In this report what are the available methods for the recovery of valuables from waste saline stream by selective crystallization method, chemical precipitation and physico-thermal route discussed in details. Also, methods to treat organic contamination in the residual solution through advanced oxidation treatment methods.","PeriodicalId":21388,"journal":{"name":"Salt in the Earth","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89319577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-11DOI: 10.5772/intechopen.86905
M. Elias, M. Laranjo, Ana Cristina Agulheiro-Santos, Maria Eduarda Potes
Throughout time, salt (sodium chloride) played an important role in human societies. In ancient times, salt was used as a form of currency and to preserve foods, such as meat and fish. Besides, salt also assumed a major importance as food flavour enhancer. However, excessive salt consumption could result in seri-ous health problems, related with hypertension and cardiovascular diseases, although this might be a controversial topic in the near future. The World Health Organization has made several policy recommendations to reduce salt intake and even implemented some policy approaches in several countries worldwide. Nevertheless, according to the European Food Safety Authority, approximately 75% of the salt we eat is already in the foods we buy. Thus, the best way to assure an effective reduction in salt consumption is to train our taste to the flavour of low-salt foods, although there is still a long way to go from awareness to action. The main goal of this chapter is to review the social and economic importance of salt throughout human history; its role in food preservation, food safety and food sensory evaluation; the impact of salt intake on human health; and the attempts to reduce or replace salt in food.
{"title":"The Role of Salt on Food and Human Health","authors":"M. Elias, M. Laranjo, Ana Cristina Agulheiro-Santos, Maria Eduarda Potes","doi":"10.5772/intechopen.86905","DOIUrl":"https://doi.org/10.5772/intechopen.86905","url":null,"abstract":"Throughout time, salt (sodium chloride) played an important role in human societies. In ancient times, salt was used as a form of currency and to preserve foods, such as meat and fish. Besides, salt also assumed a major importance as food flavour enhancer. However, excessive salt consumption could result in seri-ous health problems, related with hypertension and cardiovascular diseases, although this might be a controversial topic in the near future. The World Health Organization has made several policy recommendations to reduce salt intake and even implemented some policy approaches in several countries worldwide. Nevertheless, according to the European Food Safety Authority, approximately 75% of the salt we eat is already in the foods we buy. Thus, the best way to assure an effective reduction in salt consumption is to train our taste to the flavour of low-salt foods, although there is still a long way to go from awareness to action. The main goal of this chapter is to review the social and economic importance of salt throughout human history; its role in food preservation, food safety and food sensory evaluation; the impact of salt intake on human health; and the attempts to reduce or replace salt in food.","PeriodicalId":21388,"journal":{"name":"Salt in the Earth","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87329426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-06DOI: 10.5772/INTECHOPEN.86907
I. Durickovic
All over the world, winter maintenance is based on the application of the NaCl salt on roads, a product necessary for the elimination of slippery conditions. The quantities used for the salting operations are increasing with the development of the road network (in France, up to 2 million tons are applied each winter). This chapter will present the salt used as a deicer (its origin and chemical composition) and its chemical properties that are exploited for that purpose. Furthermore, an overview of the means of its transfer from the roads to the environment (soils and waters) as well as its impacts on these media will be presented, a special attention being devoted to the soil. The interactions of salt with other road pollutants and the treatment possibilities in the road pollution context will be discussed.
{"title":"NaCl Material for Winter Maintenance and Its Environmental Effect","authors":"I. Durickovic","doi":"10.5772/INTECHOPEN.86907","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86907","url":null,"abstract":"All over the world, winter maintenance is based on the application of the NaCl salt on roads, a product necessary for the elimination of slippery conditions. The quantities used for the salting operations are increasing with the development of the road network (in France, up to 2 million tons are applied each winter). This chapter will present the salt used as a deicer (its origin and chemical composition) and its chemical properties that are exploited for that purpose. Furthermore, an overview of the means of its transfer from the roads to the environment (soils and waters) as well as its impacts on these media will be presented, a special attention being devoted to the soil. The interactions of salt with other road pollutants and the treatment possibilities in the road pollution context will be discussed.","PeriodicalId":21388,"journal":{"name":"Salt in the Earth","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87210851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-10DOI: 10.5772/INTECHOPEN.86906
B. Kovač, U. Blaznik
This chapter emphasizes the health outcomes connected with excessive salt consumption and focuses on possibilities to reduce dietary salt intake. The biggest reductions in salt consumption in the population could be achieved by comprehensive strategies involving population-wide policies (regulation, mandatory reformulation and food labelling). Salt reduction policies include the baseline identification of population’s salt consumption and major sources of salt in the diet, reformulation of a set number of products available on the market and increased awareness and knowledge on salt reduction at an individual level, creating an environment for salt reduction and the promotion of ‘healthy food’. Innovative reformulation by food industry, therefore, has the potential to contribute substantially. Flavours of processed foods could be improved by partially replacing salt with salt substitutes and flavour enhancers. One of the approaches of salt reduction is ‘gradual reduction without the consumer’s knowledge’, which refers to the observation that people in general are unable to differentiate between two substances in which the difference in salt content is low. It is suggested that increased knowledge and appropriate promotion of healthy food and healthy dietary habits, especially in early childhood in kindergartens, schools and at home, are the most promising measures for salt reduction.
{"title":"Systematic Reduction of Excessive Salt Intake","authors":"B. Kovač, U. Blaznik","doi":"10.5772/INTECHOPEN.86906","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86906","url":null,"abstract":"This chapter emphasizes the health outcomes connected with excessive salt consumption and focuses on possibilities to reduce dietary salt intake. The biggest reductions in salt consumption in the population could be achieved by comprehensive strategies involving population-wide policies (regulation, mandatory reformulation and food labelling). Salt reduction policies include the baseline identification of population’s salt consumption and major sources of salt in the diet, reformulation of a set number of products available on the market and increased awareness and knowledge on salt reduction at an individual level, creating an environment for salt reduction and the promotion of ‘healthy food’. Innovative reformulation by food industry, therefore, has the potential to contribute substantially. Flavours of processed foods could be improved by partially replacing salt with salt substitutes and flavour enhancers. One of the approaches of salt reduction is ‘gradual reduction without the consumer’s knowledge’, which refers to the observation that people in general are unable to differentiate between two substances in which the difference in salt content is low. It is suggested that increased knowledge and appropriate promotion of healthy food and healthy dietary habits, especially in early childhood in kindergartens, schools and at home, are the most promising measures for salt reduction.","PeriodicalId":21388,"journal":{"name":"Salt in the Earth","volume":"141 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80135329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}