Pub Date : 2021-12-01DOI: 10.5772/intechopen.100022
Lethiwe D. Mthembu, Rishi Gupta, N. Deenadayalu
Rapid industrialization has led to development of various platform chemicals and fossil fuel refinery is one of the mainstreams for their production. However continuous depletion of fossil fuels reserves has led an urge to look for alternate source of feedstocks. Among various renewable sources, biomass is found to be most sustainable as it is replaced naturally. Biomass by virtue of its nature is comprised of various recalcitrant polymers and cellulose is one of them, which can be used for the generation of various platform chemicals. This chapter gives a background of cellulose and illustrate platform chemicals that can be produced from cellulose.
{"title":"Conversion of Cellulose into Value-Added Products","authors":"Lethiwe D. Mthembu, Rishi Gupta, N. Deenadayalu","doi":"10.5772/intechopen.100022","DOIUrl":"https://doi.org/10.5772/intechopen.100022","url":null,"abstract":"Rapid industrialization has led to development of various platform chemicals and fossil fuel refinery is one of the mainstreams for their production. However continuous depletion of fossil fuels reserves has led an urge to look for alternate source of feedstocks. Among various renewable sources, biomass is found to be most sustainable as it is replaced naturally. Biomass by virtue of its nature is comprised of various recalcitrant polymers and cellulose is one of them, which can be used for the generation of various platform chemicals. This chapter gives a background of cellulose and illustrate platform chemicals that can be produced from cellulose.","PeriodicalId":220327,"journal":{"name":"Cellulose Science and Derivatives","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121135708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.5772/intechopen.98709
I. Jilal, S. El Barkany, Z. Bahari, Y. El Ouardi, M. Loutou, H. Amhamdi, M. Abou-Salama, A. Salhi, A. E. El Idrissi, K. Laatikainen
The main objective of the present work is to elaborate on a new eco-friendly and efficient adsorbent designated for aquatic micropollutants removal. However, the synthesis of the Ethylenediamine Crosslinked 2D-Cellulose green adsorbent was carried out successfully, by partial grafting of benzyl entities onto hydroxyl groups of HEC, and crosslinking with ethylenediamine ED. Further, the new ethylenediamine crosslinked 2D-Cellulose was used as a biosorbent for nanoencapsulation removal of copper and lead heavy metal ions from aqueous solutions. The proposal chemical structures of unmodified and modified materials were confirmed using FTIR, XRD, TGA, and SEM–EDX analysis. Furthermore, many parameters of the optimization for Pb (II) and Cu (II) in terms of removal efficiency including pH, adsorbent amount, and contact time were optimized by response surface methodology with a Box–Behnken design. Based on the desirability optimization with three factors, the maximal removal was 99.52% and 97.5% for Pb(II) and Cu(II), respectively and was obtained at pH = 5.94, 22.2 mg as the optimal adsorbent amount, and 21.53 min as contact time.
{"title":"New Ethylenediamine Crosslinked 2D-Cellulose Adsorbent for Nanoencapsulation Removal of Pb (II) and Cu (II) Heavy Metal Ions: Synthesis, Characterization Application, and RSM-Modeling","authors":"I. Jilal, S. El Barkany, Z. Bahari, Y. El Ouardi, M. Loutou, H. Amhamdi, M. Abou-Salama, A. Salhi, A. E. El Idrissi, K. Laatikainen","doi":"10.5772/intechopen.98709","DOIUrl":"https://doi.org/10.5772/intechopen.98709","url":null,"abstract":"The main objective of the present work is to elaborate on a new eco-friendly and efficient adsorbent designated for aquatic micropollutants removal. However, the synthesis of the Ethylenediamine Crosslinked 2D-Cellulose green adsorbent was carried out successfully, by partial grafting of benzyl entities onto hydroxyl groups of HEC, and crosslinking with ethylenediamine ED. Further, the new ethylenediamine crosslinked 2D-Cellulose was used as a biosorbent for nanoencapsulation removal of copper and lead heavy metal ions from aqueous solutions. The proposal chemical structures of unmodified and modified materials were confirmed using FTIR, XRD, TGA, and SEM–EDX analysis. Furthermore, many parameters of the optimization for Pb (II) and Cu (II) in terms of removal efficiency including pH, adsorbent amount, and contact time were optimized by response surface methodology with a Box–Behnken design. Based on the desirability optimization with three factors, the maximal removal was 99.52% and 97.5% for Pb(II) and Cu(II), respectively and was obtained at pH = 5.94, 22.2 mg as the optimal adsorbent amount, and 21.53 min as contact time.","PeriodicalId":220327,"journal":{"name":"Cellulose Science and Derivatives","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115391493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}