{"title":"Comparison of Bray‐1 and Mehlich‐3 Extraction of P and K in Wisconsin Silt Loam Soils","authors":"E. Matcham, M. Ruark, D. Stoltenberg, S. Conley","doi":"10.1002/saj2.20557","DOIUrl":"https://doi.org/10.1002/saj2.20557","url":null,"abstract":"","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45812936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil Science Society of America JournalAccepted Articles Thanks to Reviewers Thanks to Reviewers, Soil Sciences Society of America Journal, 2022 First published: 11 April 2023 https://doi.org/10.1002/saj2.20550 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as https://doi.org/10.1002/saj2.20550 AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Accepted ArticlesAccepted, unedited articles published online and citable. The final edited and typeset version of record will appear in the future. RelatedInformation
{"title":"Thanks to our 2022 reviewers","authors":"","doi":"10.1002/saj2.20550","DOIUrl":"https://doi.org/10.1002/saj2.20550","url":null,"abstract":"Soil Science Society of America JournalAccepted Articles Thanks to Reviewers Thanks to Reviewers, Soil Sciences Society of America Journal, 2022 First published: 11 April 2023 https://doi.org/10.1002/saj2.20550 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as https://doi.org/10.1002/saj2.20550 AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Accepted ArticlesAccepted, unedited articles published online and citable. The final edited and typeset version of record will appear in the future. RelatedInformation","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Mason, Spencer Debenport, Chelsea DeLay, Ibrahima Diedhiou, Brian B. McSpadden Gardener, Komi B. Assigbetsee, Virginia Rich, Richard P Dick
Abstract The Sahel of West Africa has vulnerable agroecosystems that threatens food security. A potential solution is intercropping with the indigenous shrub, Guiera senegalensis J.F. Gmel. Previous research of the Optimized Shrub‐intercropping System (OSS) (high density of ∼1,500 shrubs ha ‐1 and coppiced residue incorporation) has been shown to dramatically improve pearl millet [ Pennisetum glaucum (L.) R. Br.] yield, which is attributed to improved soil quality, nutrient and water availability, and harboring a distinct microbial community. Whether this response is consistent over a climate and soil type gradient in farmers’ fields has not been investigated. Therefore, the objective was to determine the impact of G. senegalenis on soil chemistry, enzyme activity, microbiomes, and metabolic pathways of millet root zone soils in farmers’ fields. The experiment was a three‐by‐two factorial with three rainfall and soil type sites along a north–south gradient in the Senegal Peanut Basin and two sampling locations (millet root zone soil within and outside the influence of the G. senegalensis ). Guiera senegalensis shifted certain predicted bacterial metabolic pathways and enriched some bacterial and fungal genera. Notably, the increased crop growth due to G. senegalensis positively correlated with the abundance of genera having plant growth promoting properties (e.g., Enterobacter agglomerans and Paraburkholderia ). Paucibacter , a genera that has deleterious and/or pathogenic properties, was highly abundant in non‐shrub soil but completely suppressed beneath the shrub. The results showed that G. senegalensis in farmers’ fields even at typical, low densities, where coppiced residues are annually burned, still increased soil chemical and microbial properties, suggesting that a more important factor than litter is the presence of shrub roots that provide root turnover and exudates, and water inputs through hydraulic lift.
{"title":"Microbial community shifts in pearl millet root zone soils with <i>Guiera senegalensis</i> intercropping along a rainfall and soil type gradient in the Sahel","authors":"Laura Mason, Spencer Debenport, Chelsea DeLay, Ibrahima Diedhiou, Brian B. McSpadden Gardener, Komi B. Assigbetsee, Virginia Rich, Richard P Dick","doi":"10.1002/saj2.20494","DOIUrl":"https://doi.org/10.1002/saj2.20494","url":null,"abstract":"Abstract The Sahel of West Africa has vulnerable agroecosystems that threatens food security. A potential solution is intercropping with the indigenous shrub, Guiera senegalensis J.F. Gmel. Previous research of the Optimized Shrub‐intercropping System (OSS) (high density of ∼1,500 shrubs ha ‐1 and coppiced residue incorporation) has been shown to dramatically improve pearl millet [ Pennisetum glaucum (L.) R. Br.] yield, which is attributed to improved soil quality, nutrient and water availability, and harboring a distinct microbial community. Whether this response is consistent over a climate and soil type gradient in farmers’ fields has not been investigated. Therefore, the objective was to determine the impact of G. senegalenis on soil chemistry, enzyme activity, microbiomes, and metabolic pathways of millet root zone soils in farmers’ fields. The experiment was a three‐by‐two factorial with three rainfall and soil type sites along a north–south gradient in the Senegal Peanut Basin and two sampling locations (millet root zone soil within and outside the influence of the G. senegalensis ). Guiera senegalensis shifted certain predicted bacterial metabolic pathways and enriched some bacterial and fungal genera. Notably, the increased crop growth due to G. senegalensis positively correlated with the abundance of genera having plant growth promoting properties (e.g., Enterobacter agglomerans and Paraburkholderia ). Paucibacter , a genera that has deleterious and/or pathogenic properties, was highly abundant in non‐shrub soil but completely suppressed beneath the shrub. The results showed that G. senegalensis in farmers’ fields even at typical, low densities, where coppiced residues are annually burned, still increased soil chemical and microbial properties, suggesting that a more important factor than litter is the presence of shrub roots that provide root turnover and exudates, and water inputs through hydraulic lift.","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135742444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanjila Jesmin, Richard L. Mulvaney, Thomas W. Boutton
Abstract By increasing the input of corn ( Zea mays L.) residues, synthetic nitrogen (N) fertilization is often assumed to enhance soil storage of organic carbon (C), which could be especially beneficial for improving the fertility of depleted soils. To ascertain whether such a strategy can be effective, C mineralization was compared for two soils with different indigenous N contents by conducting a 60‐day laboratory incubation experiment that involved continuous monitoring of CO 2 emissions with periodic sampling for atmospheric δ 13 C analysis and for determination of soil microbial biomass and cellulolytic enzyme activities. The addition of exogenous N had a stimulatory effect on cumulative CO 2 production that was greater for the low than high N supplying soil and more prominent in the first than in the second month of incubation. During residue decomposition, microbial activities were maximized by incubating the low N soil with exogenous N, whereas cellulolytic enzyme activities were greater for the high N soil. Although intensive N fertilization can substantially increase the productivity of low‐fertility soils, the additional residue inputs thereby generated are more effective for promoting C mineralization than sequestration.
{"title":"Residue‐ and nitrogen‐induced carbon mineralization varies with soil fertility status","authors":"Tanjila Jesmin, Richard L. Mulvaney, Thomas W. Boutton","doi":"10.1002/saj2.20530","DOIUrl":"https://doi.org/10.1002/saj2.20530","url":null,"abstract":"Abstract By increasing the input of corn ( Zea mays L.) residues, synthetic nitrogen (N) fertilization is often assumed to enhance soil storage of organic carbon (C), which could be especially beneficial for improving the fertility of depleted soils. To ascertain whether such a strategy can be effective, C mineralization was compared for two soils with different indigenous N contents by conducting a 60‐day laboratory incubation experiment that involved continuous monitoring of CO 2 emissions with periodic sampling for atmospheric δ 13 C analysis and for determination of soil microbial biomass and cellulolytic enzyme activities. The addition of exogenous N had a stimulatory effect on cumulative CO 2 production that was greater for the low than high N supplying soil and more prominent in the first than in the second month of incubation. During residue decomposition, microbial activities were maximized by incubating the low N soil with exogenous N, whereas cellulolytic enzyme activities were greater for the high N soil. Although intensive N fertilization can substantially increase the productivity of low‐fertility soils, the additional residue inputs thereby generated are more effective for promoting C mineralization than sequestration.","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135836047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Lawrence, I. Fernandez, S. Bailey, C. Beier, A. Contosta, E. Lane, Peter Murdoch, L. Nave, Angelica Quintana, Donald Ross, Alissa White
Sequestration and storage of organic carbon (C) in soil is an essential component of climate change mitigation and fundamental in promoting the health and climate resilience of soils. Sources of available soil C data are increasing, which complicates efforts to consolidate the data in forms that can be readily used by stakeholders. Spatial and temporal gaps in data availability also limit the quantification of changes in soil C through space and time. Improved coordination among producers and users of
{"title":"Forming Regional Soil Carbon Networks to Support Effective Climate Change Solutions","authors":"G. Lawrence, I. Fernandez, S. Bailey, C. Beier, A. Contosta, E. Lane, Peter Murdoch, L. Nave, Angelica Quintana, Donald Ross, Alissa White","doi":"10.1002/saj2.20551","DOIUrl":"https://doi.org/10.1002/saj2.20551","url":null,"abstract":"Sequestration and storage of organic carbon (C) in soil is an essential component of climate change mitigation and fundamental in promoting the health and climate resilience of soils. Sources of available soil C data are increasing, which complicates efforts to consolidate the data in forms that can be readily used by stakeholders. Spatial and temporal gaps in data availability also limit the quantification of changes in soil C through space and time. Improved coordination among producers and users of","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44548377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil Science Society of America JournalVolume 87, Issue 3 p. 720-726 ALSO IN THIS ISSUE 2022 SSSA Award Recipients First published: 15 March 2023 https://doi.org/10.1002/saj2.20541Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Volume87, Issue3May/June 2023Pages 720-726 RelatedInformation
{"title":"2022 SSSA Award Recipients","authors":"","doi":"10.1002/saj2.20541","DOIUrl":"https://doi.org/10.1002/saj2.20541","url":null,"abstract":"Soil Science Society of America JournalVolume 87, Issue 3 p. 720-726 ALSO IN THIS ISSUE 2022 SSSA Award Recipients First published: 15 March 2023 https://doi.org/10.1002/saj2.20541Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Volume87, Issue3May/June 2023Pages 720-726 RelatedInformation","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135956290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil Science Society of America JournalEarly View ALSO IN THIS ISSUE SSSA Yearly Reports First published: 14 March 2023 https://doi.org/10.1002/saj2.20544Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL No abstract is available for this article. Early ViewOnline Version of Record before inclusion in an issue RelatedInformation
{"title":"SSSA Yearly Reports","authors":"","doi":"10.1002/saj2.20544","DOIUrl":"https://doi.org/10.1002/saj2.20544","url":null,"abstract":"Soil Science Society of America JournalEarly View ALSO IN THIS ISSUE SSSA Yearly Reports First published: 14 March 2023 https://doi.org/10.1002/saj2.20544Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL No abstract is available for this article. Early ViewOnline Version of Record before inclusion in an issue RelatedInformation","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136328793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil Science Society of America JournalVolume 87, Issue 3 p. 727-729 ALSO IN THIS ISSUE Recipients of 2022 SSSA Editor's Citation for Excellence named First published: 20 March 2023 https://doi.org/10.1002/saj2.20543Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL No abstract is available for this article. Volume87, Issue3May/June 2023Pages 727-729 RelatedInformation
美国土壤科学学会杂志第87卷,第3期p. 727-729也在这个问题的接受者2022年SSSA编辑的卓越引文命名首次出版:2023年3月20日https://doi.org/10.1002/saj2.20543Read全文taboutpdf ToolsRequest permissionExport citationAdd to favoritesTrack引文ShareShare给accessShare全文accessShare全文accessShare全文accessShare请查看我们的使用条款和条件,并在下面的复选框分享文章的全文版本。我已经阅读并接受了Wiley在线图书馆使用共享链接的条款和条件,请使用下面的链接与您的朋友和同事分享本文的全文版本。学习更多的知识。本文没有摘要。第87卷,第3期2023年5 / 6月727-729页
{"title":"Recipients of 2022 SSSA Editor's Citation for Excellence named","authors":"","doi":"10.1002/saj2.20543","DOIUrl":"https://doi.org/10.1002/saj2.20543","url":null,"abstract":"Soil Science Society of America JournalVolume 87, Issue 3 p. 727-729 ALSO IN THIS ISSUE Recipients of 2022 SSSA Editor's Citation for Excellence named First published: 20 March 2023 https://doi.org/10.1002/saj2.20543Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL No abstract is available for this article. Volume87, Issue3May/June 2023Pages 727-729 RelatedInformation","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136328794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Publisher's Report 2022:\u0000 Soil Science Society of America Journal","authors":"","doi":"10.1002/saj2.20542","DOIUrl":"https://doi.org/10.1002/saj2.20542","url":null,"abstract":"","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42481014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}