首页 > 最新文献

Special Issue 1 - COVID-19最新文献

英文 中文
Geo-mapping of COVID-19 Risk Correlates Across Districts and Parliamentary Constituencies in India 印度各区和议会选区COVID-19风险相关性的地理制图
Pub Date : 2020-09-21 DOI: 10.1162/99608F92.68BB12E4
S. Subramanian, Omar Karlsson, Weixing Zhang, Rockli Kim
In the current stage of the COVID-19 pandemic, as countries open up after an extended period of lockdown, it is important to assure the population that their health is not being sacrificed. In this article, we develop a geomapping approach to identify high-risk areas by considering four nonclinical risk correlates for COVID-19. These are population density, percentage of the population that is exposed to crowding in a household, percentage of the population without access to handwashing facilities, and percentage of the population over 65 years of age. We provide an empirical proof-of-concept demonstration for this approach for India at two critical geographic units: districts and parliamentary constituencies, collectively responsible for policy administration and governance. Our findings suggest that the geographies of the four nonclinical risk correlates are largely independent of one another (i.e., at most, there is a small correlation between measures). We avoid applying differential weights to the four measures or combining these measures into a single index, as there is an intrinsic rationale for viewing them separately since they represent mostly independent dimensions of risks that require different responses. Our primary objective was to leverage currently available data to provide decision makers detailed information and geovisualization, identifying areas with potentially differential susceptibilities to COVID-19. The information provided here can be used as a means for further ground verification and, when appropriate, for impact planning and intervention, as well as providing a rationale for eventual efficacy assessment of different nonpharmaceutical interventions. While this exercise is primarily descriptive at this stage, the estimates generated are new, rigorous, and have high relevance for timely policy discussions. We use data from the Demographic and Health Surveys, which have extensive geographic coverage and high level of standardizations, making our highly accessible approach easy to extend to other low- and middle-income countries. We share this conceptualization of geomapping, and all the data and codes used for this exercise, to encourage wider applications and advancements.
在COVID-19大流行的当前阶段,随着各国在长时间的封锁后开放,重要的是要向民众保证,他们的健康不会受到损害。在本文中,我们开发了一种测绘方法,通过考虑COVID-19的四个非临床风险相关因素来识别高风险区域。这些指标是人口密度,暴露在家庭拥挤环境中的人口百分比,无法使用洗手设施的人口百分比,以及65岁以上人口的百分比。我们为印度的两个关键地理单位提供了这一方法的经验概念验证演示:地区和议会选区,共同负责政策管理和治理。我们的研究结果表明,四种非临床风险相关因素的地理位置在很大程度上是相互独立的(即,最多在测量之间存在很小的相关性)。我们避免对这四个指标应用不同的权重,或者将这些指标组合成一个单一的指数,因为它们代表了需要不同反应的风险的主要独立维度,因此单独观察它们是有内在的理由的。我们的主要目标是利用现有数据为决策者提供详细信息和地理可视化,以确定对COVID-19可能存在不同易感性的地区。这里提供的信息可以用作进一步实地核查的手段,并在适当时用于影响规划和干预,以及为评估不同非药物干预措施的最终功效提供依据。虽然这个阶段的工作主要是描述性的,但是产生的估计是新的、严格的,并且与及时的政策讨论高度相关。我们使用来自人口和健康调查的数据,这些数据具有广泛的地理覆盖范围和高度标准化,使我们的方法易于推广到其他低收入和中等收入国家。我们分享这种测绘的概念,以及用于此练习的所有数据和代码,以鼓励更广泛的应用和进步。
{"title":"Geo-mapping of COVID-19 Risk Correlates Across Districts and Parliamentary Constituencies in India","authors":"S. Subramanian, Omar Karlsson, Weixing Zhang, Rockli Kim","doi":"10.1162/99608F92.68BB12E4","DOIUrl":"https://doi.org/10.1162/99608F92.68BB12E4","url":null,"abstract":"In the current stage of the COVID-19 pandemic, as countries open up after an extended period of lockdown, it is important to assure the population that their health is not being sacrificed. In this article, we develop a geomapping approach to identify high-risk areas by considering four nonclinical risk correlates for COVID-19. These are population density, percentage of the population that is exposed to crowding in a household, percentage of the population without access to handwashing facilities, and percentage of the population over 65 years of age. We provide an empirical proof-of-concept demonstration for this approach for India at two critical geographic units: districts and parliamentary constituencies, collectively responsible for policy administration and governance. Our findings suggest that the geographies of the four nonclinical risk correlates are largely independent of one another (i.e., at most, there is a small correlation between measures). We avoid applying differential weights to the four measures or combining these measures into a single index, as there is an intrinsic rationale for viewing them separately since they represent mostly independent dimensions of risks that require different responses. Our primary objective was to leverage currently available data to provide decision makers detailed information and geovisualization, identifying areas with potentially differential susceptibilities to COVID-19. The information provided here can be used as a means for further ground verification and, when appropriate, for impact planning and intervention, as well as providing a rationale for eventual efficacy assessment of different nonpharmaceutical interventions. While this exercise is primarily descriptive at this stage, the estimates generated are new, rigorous, and have high relevance for timely policy discussions. We use data from the Demographic and Health Surveys, which have extensive geographic coverage and high level of standardizations, making our highly accessible approach easy to extend to other low- and middle-income countries. We share this conceptualization of geomapping, and all the data and codes used for this exercise, to encourage wider applications and advancements.","PeriodicalId":222018,"journal":{"name":"Special Issue 1 - COVID-19","volume":"2 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134509508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
Special Issue 1 - COVID-19
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1