Pub Date : 2018-11-19DOI: 10.5772/INTECHOPEN.81936
V. Popa-Nita, R. Repnik
Based on the phenomenological model first presented by van der Schoot et al., which predicts the alignment of carbon nanotube (CNT) dispersions in thermotropic nematic liquid crystals, we present the extensive results concerning the phase diagram and the orientational properties of the mixture in this chapter.
基于van der Schoot等人首先提出的现象模型,该模型预测了碳纳米管(CNT)分散体在热致向列液晶中的排列,我们在本章中提出了有关相图和混合物取向性质的广泛结果。
{"title":"Binary Mixture Composed of Nematic Liquid Crystal and Carbon Nanotubes: A Theoretical Description","authors":"V. Popa-Nita, R. Repnik","doi":"10.5772/INTECHOPEN.81936","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81936","url":null,"abstract":"Based on the phenomenological model first presented by van der Schoot et al., which predicts the alignment of carbon nanotube (CNT) dispersions in thermotropic nematic liquid crystals, we present the extensive results concerning the phase diagram and the orientational properties of the mixture in this chapter.","PeriodicalId":231277,"journal":{"name":"Liquid Crystals - Self-Organized Soft Functional Materials for Advanced Applications","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115197216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-19DOI: 10.5772/INTECHOPEN.81704
D. Scutaru, I. Carlescu, Elena-Raluca Bulai, C. Ciobanu, G. Lisa, N. Hurduc
Bent-core (BC) molecules became an attractive liquid crystal class due to their potential use in smart displays and photonic devices. In contrast to calamitic mesogens, bent-shaped mesogens are self-organized superstructures with remarkable properties, given the presence of polar order in mesophases, although the molecules themselves are not chiral. A particular interest represents the biaxial nematic liquid crystal materials that are used in display technology and allow a faster switching response, compared to calamitic liquid crystals, with considerably reduced costs. This chapter briefly reviews the bent-core liquid crystals with three different core units in the structure: (1) 2,5-disubstituted oxadiazole, (2) 1,3-disubstituted benzene, and (3) 2,7-disubstituted naphthalene. To the central bent units (BUs) containing reactive functional groups of phenolic or aminic type, various mesogenic groups are symmetrically or asymmetrically connected, via esterification or condensation reactions. The obtained compounds showed biaxial nematic and/or smectic mesophases with high transition temperatures in the case of oxadiazole derivatives or cholesteric and banana-type mesophases with lower transition temperatures in the case of benzene and naphthalene derivatives.
{"title":"Bent-Core Liquid Crystals: Structures and Mesomorphic Properties","authors":"D. Scutaru, I. Carlescu, Elena-Raluca Bulai, C. Ciobanu, G. Lisa, N. Hurduc","doi":"10.5772/INTECHOPEN.81704","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81704","url":null,"abstract":"Bent-core (BC) molecules became an attractive liquid crystal class due to their potential use in smart displays and photonic devices. In contrast to calamitic mesogens, bent-shaped mesogens are self-organized superstructures with remarkable properties, given the presence of polar order in mesophases, although the molecules themselves are not chiral. A particular interest represents the biaxial nematic liquid crystal materials that are used in display technology and allow a faster switching response, compared to calamitic liquid crystals, with considerably reduced costs. This chapter briefly reviews the bent-core liquid crystals with three different core units in the structure: (1) 2,5-disubstituted oxadiazole, (2) 1,3-disubstituted benzene, and (3) 2,7-disubstituted naphthalene. To the central bent units (BUs) containing reactive functional groups of phenolic or aminic type, various mesogenic groups are symmetrically or asymmetrically connected, via esterification or condensation reactions. The obtained compounds showed biaxial nematic and/or smectic mesophases with high transition temperatures in the case of oxadiazole derivatives or cholesteric and banana-type mesophases with lower transition temperatures in the case of benzene and naphthalene derivatives.","PeriodicalId":231277,"journal":{"name":"Liquid Crystals - Self-Organized Soft Functional Materials for Advanced Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133675691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.81276
A. Mochizuki
Smectic liquid crystals’ layer structures and their influence on electro-optic characteristic properties are studied. Some background research works have revealed that a certain type of tilted smectic liquid crystal to the smectic layer normal showed some distorted out-of-plane retardation change. With intentional distortion of out-of-plane retardation change even provides almost in-plane only retardation change. In a certain type of smectic liquid crystal and its specific alignment condition, such a certain type of smectic liquid crystal panel shows in-plane only retardation switching. A more comprehensive study is still required, and such type of smectic liquid crystal panel provides unique electro-optic properties that have not been reported.
{"title":"In-Plane Retardation Switching Behavior at Certain Types of Smectic Liquid Crystals","authors":"A. Mochizuki","doi":"10.5772/INTECHOPEN.81276","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81276","url":null,"abstract":"Smectic liquid crystals’ layer structures and their influence on electro-optic characteristic properties are studied. Some background research works have revealed that a certain type of tilted smectic liquid crystal to the smectic layer normal showed some distorted out-of-plane retardation change. With intentional distortion of out-of-plane retardation change even provides almost in-plane only retardation change. In a certain type of smectic liquid crystal and its specific alignment condition, such a certain type of smectic liquid crystal panel shows in-plane only retardation switching. A more comprehensive study is still required, and such type of smectic liquid crystal panel provides unique electro-optic properties that have not been reported.","PeriodicalId":231277,"journal":{"name":"Liquid Crystals - Self-Organized Soft Functional Materials for Advanced Applications","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131193309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.81573
T. Sasaki, K. Le, Y. Naka, T. Sassa
This chapter summarizes the state of the art of research regarding photorefractive liquid crystals. Photorefractive effect is of interest because it can be used to obtain dynamic holograms, based on interference between dual laser beams within a liquid crystal to generate a refractive index grating. This technique can be employed in numerous diffraction optics applications, such as optical amplifiers, phase-conjugate wave generators, 3D displays, novelty filters, and optical tomography. The photorefractive effect in liquid crystals is especially pronounced, and both ferroelectric and nematic liquid crystals have been researched for this purpose, with the former showing special promise in practical applications. As an example, ferroelectric liquid crystals have been found to readily produce a refractive index grating in conjunction with a significant gain and a formation time of 900 ms.
{"title":"The Photorefractive Effect in Liquid Crystals","authors":"T. Sasaki, K. Le, Y. Naka, T. Sassa","doi":"10.5772/INTECHOPEN.81573","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81573","url":null,"abstract":"This chapter summarizes the state of the art of research regarding photorefractive liquid crystals. Photorefractive effect is of interest because it can be used to obtain dynamic holograms, based on interference between dual laser beams within a liquid crystal to generate a refractive index grating. This technique can be employed in numerous diffraction optics applications, such as optical amplifiers, phase-conjugate wave generators, 3D displays, novelty filters, and optical tomography. The photorefractive effect in liquid crystals is especially pronounced, and both ferroelectric and nematic liquid crystals have been researched for this purpose, with the former showing special promise in practical applications. As an example, ferroelectric liquid crystals have been found to readily produce a refractive index grating in conjunction with a significant gain and a formation time of 900 ms.","PeriodicalId":231277,"journal":{"name":"Liquid Crystals - Self-Organized Soft Functional Materials for Advanced Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117167078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}