首页 > 最新文献

The International Journal of Advanced Networking and Applications最新文献

英文 中文
Quantitative Study of Traffic Accident Prediction Models: A Case Study of Virginia Accidents 交通事故预测模型的定量研究:以弗吉尼亚州交通事故为例
Pub Date : 1900-01-01 DOI: 10.35444/ijana.2023.14501
Tahani Almanie
Traffic accidents are a serious problem that threatens people's lives, health, and properties. Thus, decreasing traffic accidents is a crucial demand for public safety. This paper proposes two data mining models to predict accident risks based on the decision tree and the naive Bayes algorithms. The purpose of the classifiers is to predict the potential severity of a traffic accident based on a set of data attributes related to the weather factors, accident timing, and properties of the road. The models are developed using data on accidents in Virginia between 2016 and 2021. Several metrics are considered to measure the performance of each model such as accuracy, precision, recall, and F1-score. Furthermore, to statistically compare the performance of the prediction models, the study employs three quantitative analysis tools, approximate visual test, paired observations, and ANOVA. The experimental results revealed that the decision tree outperforms naive Bayes in terms of prediction accuracy.
交通事故是一个严重的问题,威胁着人们的生命、健康和财产。因此,减少交通事故是公共安全的重要要求。本文提出了两种基于决策树和朴素贝叶斯算法的事故风险预测数据挖掘模型。分类器的目的是基于与天气因素、事故时间和道路属性相关的一组数据属性来预测交通事故的潜在严重程度。这些模型是根据2016年至2021年弗吉尼亚州的事故数据开发的。考虑几个指标来衡量每个模型的性能,如准确性、精度、召回率和f1分数。此外,为了统计比较预测模型的性能,研究采用了三种定量分析工具:近似视觉检验、配对观察和方差分析。实验结果表明,决策树在预测精度上优于朴素贝叶斯。
{"title":"Quantitative Study of Traffic Accident Prediction Models: A Case Study of Virginia Accidents","authors":"Tahani Almanie","doi":"10.35444/ijana.2023.14501","DOIUrl":"https://doi.org/10.35444/ijana.2023.14501","url":null,"abstract":"Traffic accidents are a serious problem that threatens people's lives, health, and properties. Thus, decreasing traffic accidents is a crucial demand for public safety. This paper proposes two data mining models to predict accident risks based on the decision tree and the naive Bayes algorithms. The purpose of the classifiers is to predict the potential severity of a traffic accident based on a set of data attributes related to the weather factors, accident timing, and properties of the road. The models are developed using data on accidents in Virginia between 2016 and 2021. Several metrics are considered to measure the performance of each model such as accuracy, precision, recall, and F1-score. Furthermore, to statistically compare the performance of the prediction models, the study employs three quantitative analysis tools, approximate visual test, paired observations, and ANOVA. The experimental results revealed that the decision tree outperforms naive Bayes in terms of prediction accuracy.","PeriodicalId":240151,"journal":{"name":"The International Journal of Advanced Networking and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125895379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The International Journal of Advanced Networking and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1