首页 > 最新文献

Reproducible Econometrics Using R最新文献

英文 中文
Random Walks, Unit Roots, and Spurious Relationships 随机漫步、单位根和虚假关系
Pub Date : 2019-02-28 DOI: 10.1093/OSO/9780190900663.003.0002
J. Racine
This chapter outlines pitfalls of using standard inference procedures common in cross- sectional settings in time series settings and presents alternative procedures. It also addresses the issue of spurious regression and cautions the reader against the unquestioning use of cross section tools in time series settings.
本章概述了在时间序列设置中使用横截面设置中常见的标准推理程序的陷阱,并提出了替代程序。它还解决了虚假回归的问题,并警告读者不要在时间序列设置中毫无疑问地使用横截面工具。
{"title":"Random Walks, Unit Roots, and Spurious Relationships","authors":"J. Racine","doi":"10.1093/OSO/9780190900663.003.0002","DOIUrl":"https://doi.org/10.1093/OSO/9780190900663.003.0002","url":null,"abstract":"This chapter outlines pitfalls of using standard inference procedures common in cross- sectional settings in time series settings and presents alternative procedures. It also addresses the issue of spurious regression and cautions the reader against the unquestioning use of cross section tools in time series settings.","PeriodicalId":244208,"journal":{"name":"Reproducible Econometrics Using R","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114131442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Univariate Linear Time Series Models 单变量线性时间序列模型
Pub Date : 2019-02-28 DOI: 10.1093/oso/9780190900663.003.0003
J. Racine
This chapter looks at a range of popular univariate time series models and their use for forecasting.
本章着眼于一系列流行的单变量时间序列模型及其在预测中的应用。
{"title":"Univariate Linear Time Series Models","authors":"J. Racine","doi":"10.1093/oso/9780190900663.003.0003","DOIUrl":"https://doi.org/10.1093/oso/9780190900663.003.0003","url":null,"abstract":"This chapter looks at a range of popular univariate time series models and their use for forecasting.","PeriodicalId":244208,"journal":{"name":"Reproducible Econometrics Using R","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133927489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Parametric Inference 鲁棒参数推理
Pub Date : 2019-02-28 DOI: 10.1093/OSO/9780190900663.003.0004
J. Racine
This chapter looks at alternatives to the use of asymptotic theory and finite-sample theory for the purpose of inference. It considers numerical approaches that include the bootstrap and the Jackknife and considers procedures for dependent processes as well as heteroskedastic and independent identically distributed instances.
本章着眼于使用渐近理论和有限样本理论进行推理的替代方法。它考虑了数值方法,包括bootstrap和Jackknife,并考虑了依赖过程以及异方差和独立的同分布实例的过程。
{"title":"Robust Parametric Inference","authors":"J. Racine","doi":"10.1093/OSO/9780190900663.003.0004","DOIUrl":"https://doi.org/10.1093/OSO/9780190900663.003.0004","url":null,"abstract":"This chapter looks at alternatives to the use of asymptotic theory and finite-sample theory for the purpose of inference. It considers numerical approaches that include the bootstrap and the Jackknife and considers procedures for dependent processes as well as heteroskedastic and independent identically distributed instances.","PeriodicalId":244208,"journal":{"name":"Reproducible Econometrics Using R","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133823636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Parametric Estimation 鲁棒参数估计
Pub Date : 2019-02-28 DOI: 10.1093/OSO/9780190900663.003.0005
J. Racine
This chapter looks at issues surrounding outliers in data and methods for addressing their presence.
本章着眼于数据异常值周围的问题和解决异常值存在的方法。
{"title":"Robust Parametric Estimation","authors":"J. Racine","doi":"10.1093/OSO/9780190900663.003.0005","DOIUrl":"https://doi.org/10.1093/OSO/9780190900663.003.0005","url":null,"abstract":"This chapter looks at issues surrounding outliers in data and methods for addressing their presence.","PeriodicalId":244208,"journal":{"name":"Reproducible Econometrics Using R","volume":"263 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114549037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to Linear Time Series Models 线性时间序列模型导论
Pub Date : 2019-02-28 DOI: 10.1093/OSO/9780190900663.003.0001
J. Racine
This chapter introduces time series data and outlines how it differs from cross sectional data. It also highlights how the object of interest when modelling time series data is the forecast, which differs from the object of interest in cross-sectional modelling, which is typically some parameter of interest that has an economic interpretation.
本章介绍了时间序列数据,并概述了它与横截面数据的区别。它还强调了当对时间序列数据建模时,感兴趣的对象是预测,这与横截面建模中的感兴趣对象不同,横截面建模通常是一些具有经济解释的感兴趣参数。
{"title":"Introduction to Linear Time Series Models","authors":"J. Racine","doi":"10.1093/OSO/9780190900663.003.0001","DOIUrl":"https://doi.org/10.1093/OSO/9780190900663.003.0001","url":null,"abstract":"This chapter introduces time series data and outlines how it differs from cross sectional data. It also highlights how the object of interest when modelling time series data is the forecast, which differs from the object of interest in cross-sectional modelling, which is typically some parameter of interest that has an economic interpretation.","PeriodicalId":244208,"journal":{"name":"Reproducible Econometrics Using R","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127948446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Reproducible Econometrics Using R
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1