首页 > 最新文献

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '11最新文献

英文 中文
INCONCO INCONCO
C. Plant, Christian Böhm
The integrative mining of heterogeneous data and the interpretability of the data mining result are two of the most important challenges of today's data mining. It is commonly agreed in the community that, particularly in the research area of clustering, both challenges have not yet received the due attention. Only few approaches for clustering of objects with mixed-type attributes exist and those few approaches do not consider cluster-specific dependencies between numerical and categorical attributes. Likewise, only a few clustering papers address the problem of interpretability: to explain why a certain set of objects have been grouped into a cluster and what a particular cluster distinguishes from another. In this paper, we approach both challenges by constructing a relationship to the concept of data compression using the Minimum Description Length principle: a detected cluster structure is the better the more efficient it can be exploited for data compression. Following this idea, we can learn, during the run of a clustering algorithm, the optimal trade-off for attribute weights and distinguish relevant attribute dependencies from coincidental ones. We extend the efficient Cholesky decomposition to model dependencies in heterogeneous data and to ensure interpretability. Our proposed algorithm, INCONCO, successfully finds clusters in mixed type data sets, identifies the relevant attribute dependencies, and explains them using linear models and case-by-case analysis. Thereby, it outperforms existing approaches in effectiveness, as our extensive experimental evaluation demonstrates.
{"title":"INCONCO","authors":"C. Plant, Christian Böhm","doi":"10.1145/2020408.2020584","DOIUrl":"https://doi.org/10.1145/2020408.2020584","url":null,"abstract":"The integrative mining of heterogeneous data and the interpretability of the data mining result are two of the most important challenges of today's data mining. It is commonly agreed in the community that, particularly in the research area of clustering, both challenges have not yet received the due attention. Only few approaches for clustering of objects with mixed-type attributes exist and those few approaches do not consider cluster-specific dependencies between numerical and categorical attributes. Likewise, only a few clustering papers address the problem of interpretability: to explain why a certain set of objects have been grouped into a cluster and what a particular cluster distinguishes from another. In this paper, we approach both challenges by constructing a relationship to the concept of data compression using the Minimum Description Length principle: a detected cluster structure is the better the more efficient it can be exploited for data compression. Following this idea, we can learn, during the run of a clustering algorithm, the optimal trade-off for attribute weights and distinguish relevant attribute dependencies from coincidental ones. We extend the efficient Cholesky decomposition to model dependencies in heterogeneous data and to ensure interpretability. Our proposed algorithm, INCONCO, successfully finds clusters in mixed type data sets, identifies the relevant attribute dependencies, and explains them using linear models and case-by-case analysis. Thereby, it outperforms existing approaches in effectiveness, as our extensive experimental evaluation demonstrates.","PeriodicalId":244646,"journal":{"name":"Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '11","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126349393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
LikeMiner LikeMiner
Xin Jin, Chi Wang, Jiebo Luo, Xiao Yu, Jiawei Han
Social media is becoming increasingly ubiquitous and popular on the Internet. Due to the huge popularity of social media websites, such as Facebook, Twitter, YouTube and Flickr, many companies or public figures are now active in maintaining pages on those websites to interact with online users, attracting a large number of fans/followers by posting interesting objects, e.g., (product) photos/videos and text messages. 'Like' has now become a very popular social function by allowing users to express their like of certain objects. It provides an accurate way of estimating user interests and an effective way of sharing/promoting information in social media. In this demo, we propose a system called LikeMiner to mine the power of 'like' in social media networks. We introduce a heterogeneous network model for social media with 'likes', and propose 'like' mining algorithms to estimate representativeness and influence of objects. The implemented prototype system demonstrates the effectiveness of the proposed approach using the large scale Facebook data.
{"title":"LikeMiner","authors":"Xin Jin, Chi Wang, Jiebo Luo, Xiao Yu, Jiawei Han","doi":"10.1145/2020408.2020528","DOIUrl":"https://doi.org/10.1145/2020408.2020528","url":null,"abstract":"Social media is becoming increasingly ubiquitous and popular on the Internet. Due to the huge popularity of social media websites, such as Facebook, Twitter, YouTube and Flickr, many companies or public figures are now active in maintaining pages on those websites to interact with online users, attracting a large number of fans/followers by posting interesting objects, e.g., (product) photos/videos and text messages. 'Like' has now become a very popular social function by allowing users to express their like of certain objects. It provides an accurate way of estimating user interests and an effective way of sharing/promoting information in social media. In this demo, we propose a system called LikeMiner to mine the power of 'like' in social media networks. We introduce a heterogeneous network model for social media with 'likes', and propose 'like' mining algorithms to estimate representativeness and influence of objects. The implemented prototype system demonstrates the effectiveness of the proposed approach using the large scale Facebook data.","PeriodicalId":244646,"journal":{"name":"Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '11","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125484265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 51
期刊
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '11
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1