Pub Date : 2020-07-24DOI: 10.5772/intechopen.93274
Yijiang Zhang, Enyue Ji, Weiwei Xu
Slope instability is one of the most common forms of dam failure. The commonly used slope stability analysis methods ignore the uncertainty and randomness of dam materials, which may overestimate the stability of dams. In this chapter, a deterministic slope stability analysis based on strength reduction finite-element method is introduced first. After that, the slope is investigated using simple probabilistic concepts and classical slope stability techniques, and the shear strength is treated as a single random variable. Further, the random finite-element method (RFEM) is shown, in which spatial correlation and local averaging are illustrated in detail. Finally, the RFEM is applied to slope stability risk assessment, and the results can lead to higher probabilities of failure.
{"title":"Probabilistic Slope Stability Analysis for Embankment Dams","authors":"Yijiang Zhang, Enyue Ji, Weiwei Xu","doi":"10.5772/intechopen.93274","DOIUrl":"https://doi.org/10.5772/intechopen.93274","url":null,"abstract":"Slope instability is one of the most common forms of dam failure. The commonly used slope stability analysis methods ignore the uncertainty and randomness of dam materials, which may overestimate the stability of dams. In this chapter, a deterministic slope stability analysis based on strength reduction finite-element method is introduced first. After that, the slope is investigated using simple probabilistic concepts and classical slope stability techniques, and the shear strength is treated as a single random variable. Further, the random finite-element method (RFEM) is shown, in which spatial correlation and local averaging are illustrated in detail. Finally, the RFEM is applied to slope stability risk assessment, and the results can lead to higher probabilities of failure.","PeriodicalId":245367,"journal":{"name":"Dam Engineering - Recent Advances in Design and Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115669658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-17DOI: 10.5772/intechopen.92893
Q. Zhong, Yibo Shan, Jiaxin Liu
Simulation of dam breach process has significant influence on the evaluation of consequence of dam breach flood. In this study, research progresses on the numerical modeling of earth-rock dams’ breach process are summarized, especially the latest research results of the author’s research team in recent years. However, there still has a considerable gap in the versatility of computer software and visualization technology of dam breaching process. It is suggested that more efforts should be made in the future to study the detailed physically based numerical model for core dam and concrete face rockfill dam; further, more attention should be paid to the application of visualization technology in dam breach process simulation. Finally, the universal and friendly visualization computer software that can accurately simulate the dam failure process and flood routing for earth-rock dams is sorely needed.
{"title":"Earth-Rock Dams’ Breach Modelling","authors":"Q. Zhong, Yibo Shan, Jiaxin Liu","doi":"10.5772/intechopen.92893","DOIUrl":"https://doi.org/10.5772/intechopen.92893","url":null,"abstract":"Simulation of dam breach process has significant influence on the evaluation of consequence of dam breach flood. In this study, research progresses on the numerical modeling of earth-rock dams’ breach process are summarized, especially the latest research results of the author’s research team in recent years. However, there still has a considerable gap in the versatility of computer software and visualization technology of dam breaching process. It is suggested that more efforts should be made in the future to study the detailed physically based numerical model for core dam and concrete face rockfill dam; further, more attention should be paid to the application of visualization technology in dam breach process simulation. Finally, the universal and friendly visualization computer software that can accurately simulate the dam failure process and flood routing for earth-rock dams is sorely needed.","PeriodicalId":245367,"journal":{"name":"Dam Engineering - Recent Advances in Design and Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114268575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-29DOI: 10.5772/intechopen.92221
Yumeng Zhu, Guo-ying Li, Z. Mi, Z. Fu, K. Wei
The old dam of the Zhushou Reservoir is a clay core rock-debris dam with a maximum height of 63.4 m. After heightening, the new dam is a concrete-faced rockfill dam with a maximum height of 98.1 m. In the initial design stage, a rigid connection is proposed between the cutoff wall and toe slab. After the concrete cutoff wall is built at the axis of the old dam, a complete cutoff system is composed of cutoff wall, toe slab, and face slab. In this paper, based on the static and dynamic tests of dam materials, the Shen Zhujiang double-yield surface elastic-plastic model is used as the static constitutive model, and the contact friction model is used as the contact surface model. The three-dimensional finite element method is used to simulate the construction filling and water storage process during operation. The simulation results show that the maximum horizontal displacement occurs in the dam body of the old dam and the maximum settlement occurs at the interface between the old and new dams. During the storage period, the cutoff wall will not be damaged, and the tensile stress of the local area at the junction of toe slab and bank slope has exceeded the allowable value for C30 plain concrete, so the reinforcement should be strengthened at this location.
{"title":"Heightening of an Existing Embankment Dam: Results from Numerical Simulations","authors":"Yumeng Zhu, Guo-ying Li, Z. Mi, Z. Fu, K. Wei","doi":"10.5772/intechopen.92221","DOIUrl":"https://doi.org/10.5772/intechopen.92221","url":null,"abstract":"The old dam of the Zhushou Reservoir is a clay core rock-debris dam with a maximum height of 63.4 m. After heightening, the new dam is a concrete-faced rockfill dam with a maximum height of 98.1 m. In the initial design stage, a rigid connection is proposed between the cutoff wall and toe slab. After the concrete cutoff wall is built at the axis of the old dam, a complete cutoff system is composed of cutoff wall, toe slab, and face slab. In this paper, based on the static and dynamic tests of dam materials, the Shen Zhujiang double-yield surface elastic-plastic model is used as the static constitutive model, and the contact friction model is used as the contact surface model. The three-dimensional finite element method is used to simulate the construction filling and water storage process during operation. The simulation results show that the maximum horizontal displacement occurs in the dam body of the old dam and the maximum settlement occurs at the interface between the old and new dams. During the storage period, the cutoff wall will not be damaged, and the tensile stress of the local area at the junction of toe slab and bank slope has exceeded the allowable value for C30 plain concrete, so the reinforcement should be strengthened at this location.","PeriodicalId":245367,"journal":{"name":"Dam Engineering - Recent Advances in Design and Analysis","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131071159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-31DOI: 10.5772/intechopen.91916
V. Sharma, A. Murakami, K. Fujisawa
Finite element method (FEM) is the most extended approach for analyzing the design of the dams against earthquake motion. In such simulations, time integration schemes are employed to obtain the response of the dam at time tn+1 from the known response at time tn. To this end, it is desirable that such schemes are high-order accurate in time and remain unconditionally stable large time-step size can be employed to decrease the computation cost. Moreover, such schemes should attenuate the high-frequency components from the response of structure being studied. Keeping this in view, this chapter presents the theory of time-discontinuous space-time finite element method (ST/FEM) and its application to obtain the response of dam-reservoir system to seismic loading.
{"title":"Space-Time Finite Element Method for Seismic Analysis of Concrete Dam","authors":"V. Sharma, A. Murakami, K. Fujisawa","doi":"10.5772/intechopen.91916","DOIUrl":"https://doi.org/10.5772/intechopen.91916","url":null,"abstract":"Finite element method (FEM) is the most extended approach for analyzing the design of the dams against earthquake motion. In such simulations, time integration schemes are employed to obtain the response of the dam at time tn+1 from the known response at time tn. To this end, it is desirable that such schemes are high-order accurate in time and remain unconditionally stable large time-step size can be employed to decrease the computation cost. Moreover, such schemes should attenuate the high-frequency components from the response of structure being studied. Keeping this in view, this chapter presents the theory of time-discontinuous space-time finite element method (ST/FEM) and its application to obtain the response of dam-reservoir system to seismic loading.","PeriodicalId":245367,"journal":{"name":"Dam Engineering - Recent Advances in Design and Analysis","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126052771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}