O. Hersi, E. Landing, David A. Franzi, J. Hagadorn
The Ottawa aulacogen/graben on the NE US—Canadian (SW Quebec and eastern Ontario) border is a long ENE-trending structure formed with initial late Neo proterozoic rifting of the Rodinia supercontinent. This rifting formed the active spreading arms (New York Promontory and Quebec Reentrant) along the (presently) NE margin of the new Laurentia paleocontinent, with the Ottawa aulacogen commonly regarded as a failed arm of the rifting. However, no sediment accumulation in the aulacogen is recorded until the late early Cambrian subsidence of a SE- trending belt that includes the aulacogen and its extension, the Franklin Basin, in NW Vermont. Late early Cambrian marine onlap (Altona Formation) followed by more rapid late middle Cambrian subsidence and deposition of fluviatile arkoses (Covey Hill Formation of SW Quebec and Ausable Formation/Member of eastern New York) record rapid foundering of this “failed arm.” Subsequent deposition (latest middle Cambrian–Early Ordovician) in the Ottawa aulacogen produced a vertical succession of lithofacies that are fully comparable with those of the shelf of the New York Promontory. One of the greatest challenges in summarizing the geological history of the Ottawa aulacogen is the presence of a duplicate stratigraphic nomenclature with lithostratigraphic names changing as state and provincial borders are crossed.
{"title":"Cambrian–Lower Ordovician of SW Quebec–NE New York","authors":"O. Hersi, E. Landing, David A. Franzi, J. Hagadorn","doi":"10.1130/2021.0060(01)","DOIUrl":"https://doi.org/10.1130/2021.0060(01)","url":null,"abstract":"\u0000 The Ottawa aulacogen/graben on the NE US—Canadian (SW Quebec and eastern Ontario) border is a long ENE-trending structure formed with initial late Neo proterozoic rifting of the Rodinia supercontinent. This rifting formed the active spreading arms (New York Promontory and Quebec Reentrant) along the (presently) NE margin of the new Laurentia paleocontinent, with the Ottawa aulacogen commonly regarded as a failed arm of the rifting. However, no sediment accumulation in the aulacogen is recorded until the late early Cambrian subsidence of a SE- trending belt that includes the aulacogen and its extension, the Franklin Basin, in NW Vermont. Late early Cambrian marine onlap (Altona Formation) followed by more rapid late middle Cambrian subsidence and deposition of fluviatile arkoses (Covey Hill Formation of SW Quebec and Ausable Formation/Member of eastern New York) record rapid foundering of this “failed arm.” Subsequent deposition (latest middle Cambrian–Early Ordovician) in the Ottawa aulacogen produced a vertical succession of lithofacies that are fully comparable with those of the shelf of the New York Promontory. One of the greatest challenges in summarizing the geological history of the Ottawa aulacogen is the presence of a duplicate stratigraphic nomenclature with lithostratigraphic names changing as state and provincial borders are crossed.","PeriodicalId":246141,"journal":{"name":"GSA in the Field in 2020","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115151295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
On this field trip we visit three sites in the Salt Lake Valley, Utah, USA, where we examine the geomorphology of the Bonneville shoreline, the history of glaciation in the Wasatch Range, and shorezone geomorphology of Great Salt Lake. Stop 1 is at Steep Mountain bench, adjacent to Point of the Mountain in the Traverse Mountains, where the Bonneville shoreline is well developed and we can examine geomorphic evidence for the behavior of Lake Bonneville at its highest levels. At Stop 2 at the mouths of Little Cottonwood and Bells Canyons in the Wasatch Range, we examine geochronologic and geomorphic evidence for the interaction of mountain glaciers with Lake Bonneville. At the Great Salt Lake at Stop 3, we can examine modern processes and evidence of the Holocene history of the lake, and appreciate how Lake Bonneville and Great Salt Lake are two end members of a long-lived lacustrine system in one of the tectonically generated basins of the Great Basin.
在这次实地考察中,我们参观了美国犹他州盐湖山谷的三个地点,在那里我们研究了博纳维尔海岸线的地貌,瓦萨奇山脉的冰川历史,以及大盐湖的岸带地貌。第1站位于陡峭的山边,毗邻特拉弗斯山脉的Point of the Mountain,那里的博纳维尔海岸线非常发达,我们可以检查博纳维尔湖最高水位时的地貌特征。在瓦萨奇山脉的小棉谷和贝尔峡谷口的第二站,我们检查了山地冰川与邦纳维尔湖相互作用的地质年代学和地貌证据。在第三站的大盐湖,我们可以检查现代过程和湖泊全新世历史的证据,并了解博纳维尔湖和大盐湖是如何在大盆地的一个构造生成盆地中成为一个长期存在的湖泊系统的两个末端成员的。
{"title":"A field trip to observe features of Lake Bonneville, mountain glaciation, and Great Salt Lake near Salt Lake City, Utah, USA","authors":"C. Oviatt, G. Atwood, B. Laabs, P. Jewell, H. Jol","doi":"10.1130/2021.0060(03)","DOIUrl":"https://doi.org/10.1130/2021.0060(03)","url":null,"abstract":"\u0000 On this field trip we visit three sites in the Salt Lake Valley, Utah, USA, where we examine the geomorphology of the Bonneville shoreline, the history of glaciation in the Wasatch Range, and shorezone geomorphology of Great Salt Lake. Stop 1 is at Steep Mountain bench, adjacent to Point of the Mountain in the Traverse Mountains, where the Bonneville shoreline is well developed and we can examine geomorphic evidence for the behavior of Lake Bonneville at its highest levels. At Stop 2 at the mouths of Little Cottonwood and Bells Canyons in the Wasatch Range, we examine geochronologic and geomorphic evidence for the interaction of mountain glaciers with Lake Bonneville. At the Great Salt Lake at Stop 3, we can examine modern processes and evidence of the Holocene history of the lake, and appreciate how Lake Bonneville and Great Salt Lake are two end members of a long-lived lacustrine system in one of the tectonically generated basins of the Great Basin.","PeriodicalId":246141,"journal":{"name":"GSA in the Field in 2020","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121475220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This three-day field trip focuses on the stratigraphy and the structural characteristics of the late- and post-Taconian sedimentary basins of the southern Québec Appalachians, with a particular emphasis on N-to-S and W-to-E structural and lithological variations. In order to discuss various aspects of the regional structural evolution of these basins, we will visit a series of key outcrops following three sections, the Beauce/Thetford-Mines sections, the Sherbrooke section, and the Coaticook section.
{"title":"From obduction to collision: A transect across Ordovician to Devonian sedimentary basins of the Québec Appalachians, Canada","authors":"M. Perrot, S. Souza, A. Tremblay","doi":"10.1130/2020.0060(02)","DOIUrl":"https://doi.org/10.1130/2020.0060(02)","url":null,"abstract":"\u0000 This three-day field trip focuses on the stratigraphy and the structural characteristics of the late- and post-Taconian sedimentary basins of the southern Québec Appalachians, with a particular emphasis on N-to-S and W-to-E structural and lithological variations. In order to discuss various aspects of the regional structural evolution of these basins, we will visit a series of key outcrops following three sections, the Beauce/Thetford-Mines sections, the Sherbrooke section, and the Coaticook section.","PeriodicalId":246141,"journal":{"name":"GSA in the Field in 2020","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123323237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}