Pub Date : 2021-10-18DOI: 10.5772/intechopen.100286
Chenghai Li
Mesenchymal stem cell/stromal cells (MSCs) can differentiate into a variety of cell types, including osteocytes, adipocytes and chondrocytes. MSCs are present in the multiple types of adult tissue, such as bone marrow, adipose tissue, and various neonatal birth-associated tissues. Given their self-renewal and differentiation potential, immunomodulatory and paracrine properties, and lacking major histocompatibility complex (MHC) class II molecules, MSCs have attracted much attention for stem cell-based translational medicine research. Due to a very low frequency in different types of tissue, MSCs can be isolated and expanded in vitro to derive sufficient cell numbers prior to the clinical applications. In this chapter, the methodology to obtain primary bone marrow-derived MSCs as well as their in vitro culture expansion will be described. To assess the functional properties, differentiation assays, including osteogenesis, chondrogenesis and adipogenesis, 3-D culture of MSCs and co-culture of MSCs and tumor cells are also provided. Finally, the long-term culture associated alterations of MSCs, such as replicative senescence and spontaneous transformation, will be discussed for better understanding of the use of MSCs at the early stages for safe and effective cell-based therapy.
{"title":"Isolation and Expansion of Mesenchymal Stem/Stromal Cells, Functional Assays and Long-Term Culture Associated Alterations of Cellular Properties","authors":"Chenghai Li","doi":"10.5772/intechopen.100286","DOIUrl":"https://doi.org/10.5772/intechopen.100286","url":null,"abstract":"Mesenchymal stem cell/stromal cells (MSCs) can differentiate into a variety of cell types, including osteocytes, adipocytes and chondrocytes. MSCs are present in the multiple types of adult tissue, such as bone marrow, adipose tissue, and various neonatal birth-associated tissues. Given their self-renewal and differentiation potential, immunomodulatory and paracrine properties, and lacking major histocompatibility complex (MHC) class II molecules, MSCs have attracted much attention for stem cell-based translational medicine research. Due to a very low frequency in different types of tissue, MSCs can be isolated and expanded in vitro to derive sufficient cell numbers prior to the clinical applications. In this chapter, the methodology to obtain primary bone marrow-derived MSCs as well as their in vitro culture expansion will be described. To assess the functional properties, differentiation assays, including osteogenesis, chondrogenesis and adipogenesis, 3-D culture of MSCs and co-culture of MSCs and tumor cells are also provided. Finally, the long-term culture associated alterations of MSCs, such as replicative senescence and spontaneous transformation, will be discussed for better understanding of the use of MSCs at the early stages for safe and effective cell-based therapy.","PeriodicalId":248889,"journal":{"name":"Cell Culture [Working Title]","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130320163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-13DOI: 10.5772/intechopen.100382
Sangeeta Ballav, A. Deshmukh, Shafina Siddiqui, J. Aich, Soumya Basu
Cell culture is one of the most important and commonly used in vitro tools to comprehend various aspects of cells or tissues of a living body such as cell biology, tissue morphology, mechanism of diseases, cell signaling, drug action, cancer research and also finds its great importance in preclinical trials of various drugs. There are two major types of cell cultures that are most commonly used- two-dimensional (2D) and three-dimensional culture (3D). The former has been used since the 1900s, owing to its simplicity and low-cost maintenance as it forms a monolayer, while the latter being the advanced version and currently most worked upon. This chapter intends to provide the true meaning and significance to both cultures. It starts by making a clear distinction between the two and proceeds further to discuss their different applications in vitro. The significance of 2D culture is projected through different assays and therapeutic treatment to understand cell motility and treatment of diseases, whereas 3D culture includes different models and spheroid structures consisting of multiple layers of cells, and puts a light on its use in drug discovery and development. The chapter is concluded with a detailed account of the production of therapeutic proteins by the use of cells.
{"title":"Two-Dimensional and Three-Dimensional Cell Culture and Their Applications","authors":"Sangeeta Ballav, A. Deshmukh, Shafina Siddiqui, J. Aich, Soumya Basu","doi":"10.5772/intechopen.100382","DOIUrl":"https://doi.org/10.5772/intechopen.100382","url":null,"abstract":"Cell culture is one of the most important and commonly used in vitro tools to comprehend various aspects of cells or tissues of a living body such as cell biology, tissue morphology, mechanism of diseases, cell signaling, drug action, cancer research and also finds its great importance in preclinical trials of various drugs. There are two major types of cell cultures that are most commonly used- two-dimensional (2D) and three-dimensional culture (3D). The former has been used since the 1900s, owing to its simplicity and low-cost maintenance as it forms a monolayer, while the latter being the advanced version and currently most worked upon. This chapter intends to provide the true meaning and significance to both cultures. It starts by making a clear distinction between the two and proceeds further to discuss their different applications in vitro. The significance of 2D culture is projected through different assays and therapeutic treatment to understand cell motility and treatment of diseases, whereas 3D culture includes different models and spheroid structures consisting of multiple layers of cells, and puts a light on its use in drug discovery and development. The chapter is concluded with a detailed account of the production of therapeutic proteins by the use of cells.","PeriodicalId":248889,"journal":{"name":"Cell Culture [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124775504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-29DOI: 10.5772/intechopen.99146
H. Rachamalla, Anubhab Mukherjee, Manash K. Paul
The significant challenges faced by modern-day medicine include designing a target-specific drug delivery system with a controlled release mechanism, having the potential to avoid opsonization and reduce bio-toxicity. Nanoparticles are materials with nanoscale dimensions and maybe natural and synthetic in origin. Engineered nano-sized materials are playing an indispensable role in the field of nanomedicine and nanobiotechnology. Besides, engineered nano-sized particles impart therapeutic applications with enhanced specificity because of their unique bespoke properties. Moreover, such application-customized nanoparticles offer an enormous possibility for their compatibility with different biological molecules like proteins, genetic materials, cell membranes, and organelles at the nano-bio frame. Besides, surface functionalization with targeting moieties such as small molecule ligands, monoclonal antibodies, aptamers, cell-penetrating peptides, and proteins facilitate nanoparticle-based specific tissue targeting. This review summarizes some of the advances in nanoparticle-based therapeutics and theranostics. A better understanding of idealistic preparation methods, physicochemical attributes, surface functionalization, biocompatibility can empower the potential translation of nanomaterials from the ‘bench-to-bedside’. In modern-day medicine, engineered nanoparticles have a wide range of demands ranging from bio-imaging, theranostics, tissue engineering, sensors, drug and nucleic acid delivery, and other pharmaceuticals applications. 2D and 3D mammalian cell-based assays are widely used to model diseases, screening of drugs, drug discovery, and toxicity analyses. Recent advances in cell culture technology and associated progress in nanotechnology have enabled researchers to study a wide variety of physiologically relevant questions. This chapter explores the properties of nanoparticles, different targeted delivery methods, biological analysis, and theranostics. Moreover, this chapter also emphasizes biosafety and bioethics associated with mammalian cell culture and discusses the significance of intellectual property rights from an industrial and academic perspective.
{"title":"Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture","authors":"H. Rachamalla, Anubhab Mukherjee, Manash K. Paul","doi":"10.5772/intechopen.99146","DOIUrl":"https://doi.org/10.5772/intechopen.99146","url":null,"abstract":"The significant challenges faced by modern-day medicine include designing a target-specific drug delivery system with a controlled release mechanism, having the potential to avoid opsonization and reduce bio-toxicity. Nanoparticles are materials with nanoscale dimensions and maybe natural and synthetic in origin. Engineered nano-sized materials are playing an indispensable role in the field of nanomedicine and nanobiotechnology. Besides, engineered nano-sized particles impart therapeutic applications with enhanced specificity because of their unique bespoke properties. Moreover, such application-customized nanoparticles offer an enormous possibility for their compatibility with different biological molecules like proteins, genetic materials, cell membranes, and organelles at the nano-bio frame. Besides, surface functionalization with targeting moieties such as small molecule ligands, monoclonal antibodies, aptamers, cell-penetrating peptides, and proteins facilitate nanoparticle-based specific tissue targeting. This review summarizes some of the advances in nanoparticle-based therapeutics and theranostics. A better understanding of idealistic preparation methods, physicochemical attributes, surface functionalization, biocompatibility can empower the potential translation of nanomaterials from the ‘bench-to-bedside’. In modern-day medicine, engineered nanoparticles have a wide range of demands ranging from bio-imaging, theranostics, tissue engineering, sensors, drug and nucleic acid delivery, and other pharmaceuticals applications. 2D and 3D mammalian cell-based assays are widely used to model diseases, screening of drugs, drug discovery, and toxicity analyses. Recent advances in cell culture technology and associated progress in nanotechnology have enabled researchers to study a wide variety of physiologically relevant questions. This chapter explores the properties of nanoparticles, different targeted delivery methods, biological analysis, and theranostics. Moreover, this chapter also emphasizes biosafety and bioethics associated with mammalian cell culture and discusses the significance of intellectual property rights from an industrial and academic perspective.","PeriodicalId":248889,"journal":{"name":"Cell Culture [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128666440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-14DOI: 10.5772/intechopen.99387
M. Salauddin
Cell culture is an in vitro technique in which cells, tissues, or organs (animal origin) are artificially grown with the support of an artificial environment that encompasses culture medium, CO2 level, pH indicator, temperature keeping tissues alive and growing appropriately. Organ culture, Primary explant culture, and Cell culture among them cell culture widely used for the understanding of cell growth, normal functions, identification of growth factors, viral vaccine development, recombinant DNA (rDNA) technology, and immunobiological research. Due to high feasibility, cell culture practices highly demandable in the pharmaceutical industry. As well as animal cell culture used in laboratory research to study the cytotoxicity of new drug metabolic studies, aging, therapeutic proteins, the effects of drugs and toxic compounds on the cells and mutagenesis and carcinogenesis. There are a lot of issues in cell culture, Mycoplasma is one of the major. During cell culture, a single antibiotic often cannot kill the mycoplasma. Besides, culture media, pH indicator, incubation, cryopreservation, thawing, passaging of cells, and trypsinization have a great impact on cell culture. This chapter will help the reader to understand the whole process of cell culture and its applications, which will take them one step forward in their virology and cell culture research along with inspiration. This chapter also aids in the concept of cell count, cell suspension, CCF measurement, MOI (Multiplicity of Infection), and cell infection. Eventually, the reader will get a crystal clear concept of cell culture.
{"title":"A Brief Concept of Cell Culture: Challenges, Prospects and Applications","authors":"M. Salauddin","doi":"10.5772/intechopen.99387","DOIUrl":"https://doi.org/10.5772/intechopen.99387","url":null,"abstract":"Cell culture is an in vitro technique in which cells, tissues, or organs (animal origin) are artificially grown with the support of an artificial environment that encompasses culture medium, CO2 level, pH indicator, temperature keeping tissues alive and growing appropriately. Organ culture, Primary explant culture, and Cell culture among them cell culture widely used for the understanding of cell growth, normal functions, identification of growth factors, viral vaccine development, recombinant DNA (rDNA) technology, and immunobiological research. Due to high feasibility, cell culture practices highly demandable in the pharmaceutical industry. As well as animal cell culture used in laboratory research to study the cytotoxicity of new drug metabolic studies, aging, therapeutic proteins, the effects of drugs and toxic compounds on the cells and mutagenesis and carcinogenesis. There are a lot of issues in cell culture, Mycoplasma is one of the major. During cell culture, a single antibiotic often cannot kill the mycoplasma. Besides, culture media, pH indicator, incubation, cryopreservation, thawing, passaging of cells, and trypsinization have a great impact on cell culture. This chapter will help the reader to understand the whole process of cell culture and its applications, which will take them one step forward in their virology and cell culture research along with inspiration. This chapter also aids in the concept of cell count, cell suspension, CCF measurement, MOI (Multiplicity of Infection), and cell infection. Eventually, the reader will get a crystal clear concept of cell culture.","PeriodicalId":248889,"journal":{"name":"Cell Culture [Working Title]","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117271595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}