首页 > 最新文献

Compressed Sensing in Radar Signal Processing最新文献

英文 中文
Clutter Rejection and Adaptive Filtering in Compressed Sensing Radar 压缩感知雷达的杂波抑制与自适应滤波
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.003
{"title":"Clutter Rejection and Adaptive Filtering in Compressed Sensing Radar","authors":"","doi":"10.1017/9781108552653.003","DOIUrl":"https://doi.org/10.1017/9781108552653.003","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117212573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Index 指数
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.013
{"title":"Index","authors":"","doi":"10.1017/9781108552653.013","DOIUrl":"https://doi.org/10.1017/9781108552653.013","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127723475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperative Spectrum Sharing between Sparse Sensing-Based Radar and Communication Systems 基于稀疏感知的雷达与通信系统的协同频谱共享
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.011
{"title":"Cooperative Spectrum Sharing between Sparse Sensing-Based Radar and Communication Systems","authors":"","doi":"10.1017/9781108552653.011","DOIUrl":"https://doi.org/10.1017/9781108552653.011","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133193056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fast and Robust Sparsity-Based STAP Methods for Nonhomogeneous Clutter 基于稀疏性的非均匀杂波快速鲁棒STAP方法
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.007
{"title":"Fast and Robust Sparsity-Based STAP Methods for Nonhomogeneous Clutter","authors":"","doi":"10.1017/9781108552653.007","DOIUrl":"https://doi.org/10.1017/9781108552653.007","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121866720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RFI Mitigation Based on Compressive Sensing Methods for UWB Radar Imaging 基于压缩感知的超宽带雷达成像RFI抑制方法
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.004
{"title":"RFI Mitigation Based on Compressive Sensing Methods for UWB Radar Imaging","authors":"","doi":"10.1017/9781108552653.004","DOIUrl":"https://doi.org/10.1017/9781108552653.004","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116755893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressed Sensing Methods for Radar Imaging in the Presence of Phase Errors and Moving Objects 存在相位误差和运动目标的雷达成像压缩感知方法
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.012
{"title":"Compressed Sensing Methods for Radar Imaging in the Presence of Phase Errors and Moving Objects","authors":"","doi":"10.1017/9781108552653.012","DOIUrl":"https://doi.org/10.1017/9781108552653.012","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117090142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressed CFAR Techniques 压缩CFAR技术
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.005
{"title":"Compressed CFAR Techniques","authors":"","doi":"10.1017/9781108552653.005","DOIUrl":"https://doi.org/10.1017/9781108552653.005","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124773484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectrum Sensing for Cognitive Radar via Model Sparsity Exploitation 基于模型稀疏性的认知雷达频谱感知
Pub Date : 2019-09-30 DOI: 10.1017/9781108552653.010
{"title":"Spectrum Sensing for Cognitive Radar via Model Sparsity Exploitation","authors":"","doi":"10.1017/9781108552653.010","DOIUrl":"https://doi.org/10.1017/9781108552653.010","url":null,"abstract":"","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132965478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Beamforming via Sparsity-Based Reconstruction of Covariance Matrix 基于稀疏性重构协方差矩阵的自适应波束形成
Pub Date : 1900-01-01 DOI: 10.1017/9781108552653.009
Yujie Gu, N. Goodman, Yimin D. Zhang
Traditional adaptive beamformers are very sensitive to model mismatch, especially when the training samples for adaptive beamformer design are contaminated by the desired signal. In this chapter, we reconstruct a signal-free interference-plus-noise covariance matrix for adaptive beamformer design. Exploiting the sparsity of sources, the interference covariance matrix can be reconstructed as a weighted sum of the outer products of the interference steering vectors, and the corresponding parameters can be estimated from a sparsityconstrained covariance matrix fitting problem. In contrast to classical compressive sensing and sparse reconstruction techniques, the sparsity-constrained covariance matrix fitting problem can be effectively solved as a modified least squares solution by using the a priori information on the array structure. Extensive simulation results demonstrate that the proposed adaptive beamformer almost always provides the near-optimal output performance regardless of the input signal power.
传统的自适应波束形成器对模型失配非常敏感,特别是当用于自适应波束形成器设计的训练样本被期望信号污染时。在本章中,我们重建了自适应波束形成器设计的无信号干扰加噪声协方差矩阵。利用信号源的稀疏性,将干扰协方差矩阵重构为干扰导向向量外积的加权和,并通过稀疏性约束协方差矩阵拟合问题估计相应的参数。与传统的压缩感知和稀疏重建技术相比,稀疏约束的协方差矩阵拟合问题可以利用阵列结构的先验信息作为改进的最小二乘解有效地求解。大量的仿真结果表明,无论输入信号功率如何,所提出的自适应波束形成器几乎总能提供接近最优的输出性能。
{"title":"Adaptive Beamforming via Sparsity-Based Reconstruction of Covariance Matrix","authors":"Yujie Gu, N. Goodman, Yimin D. Zhang","doi":"10.1017/9781108552653.009","DOIUrl":"https://doi.org/10.1017/9781108552653.009","url":null,"abstract":"Traditional adaptive beamformers are very sensitive to model mismatch, especially when the training samples for adaptive beamformer design are contaminated by the desired signal. In this chapter, we reconstruct a signal-free interference-plus-noise covariance matrix for adaptive beamformer design. Exploiting the sparsity of sources, the interference covariance matrix can be reconstructed as a weighted sum of the outer products of the interference steering vectors, and the corresponding parameters can be estimated from a sparsityconstrained covariance matrix fitting problem. In contrast to classical compressive sensing and sparse reconstruction techniques, the sparsity-constrained covariance matrix fitting problem can be effectively solved as a modified least squares solution by using the a priori information on the array structure. Extensive simulation results demonstrate that the proposed adaptive beamformer almost always provides the near-optimal output performance regardless of the input signal power.","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134005233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Compressed Sensing in Radar Signal Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1