首页 > 最新文献

More Trouble with Maths最新文献

英文 中文
Short-term memory and working memory 短时记忆和工作记忆
Pub Date : 2020-03-24 DOI: 10.4324/9781003017721-5
S. Chinn
{"title":"Short-term memory and working memory","authors":"S. Chinn","doi":"10.4324/9781003017721-5","DOIUrl":"https://doi.org/10.4324/9781003017721-5","url":null,"abstract":"","PeriodicalId":251399,"journal":{"name":"More Trouble with Maths","volume":"427 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126723590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mathematics anxiety 数学焦虑
Pub Date : 2020-03-24 DOI: 10.4324/9781003017721-7
S. Chinn
{"title":"Mathematics anxiety","authors":"S. Chinn","doi":"10.4324/9781003017721-7","DOIUrl":"https://doi.org/10.4324/9781003017721-7","url":null,"abstract":"","PeriodicalId":251399,"journal":{"name":"More Trouble with Maths","volume":"279 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116194222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation 估计
Pub Date : 2020-03-24 DOI: 10.1002/9781119505969.ch6
S. Chinn
Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state is a critical measurement for clinical neurophysiology, basic neurophysiology studies, and demonstrates great promise for the development of neural prosthetic devices for assistive applications and the treatment of neuro- logical disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the observation of neural dynamics from the cortical surface at the micrometer scale. While these technical capa-bilities may be enabling, the extent to which fi ner spatial scale recording enhances functionally relevant neural state inference is unclear. We examine this question by employing a high-density and low impedance 400 μ m pitch microECoG ( μ ECoG) grid to record neural activity from the human cortical surface during cognitive tasks. By applying machine learning techniques to classify task conditions from the envelope of high-frequency band (70 – 170Hz) neural activity collected from two study participants, we demonstrate that higher density grids can lead to more accurate binary task condition classi fi cation. When controlling for grid area and selecting task informative sub-regions of the complete grid, we observed a consistent increase in mean classi fi cation accuracy with higher grid density; in particular, 400 μ m pitch grids outperforming spatially sub-sampled lower density grids up to 23%. We also introduce a modeling framework to provide intuition for how spatial properties of measurements affect the performance gap between high and low density grids. To our knowledge, this work is the fi rst quantitative demonstration of human sub-millimeter pitch cortical surface recording yielding higher- fi delity state estimation relative to devices at the millimeter-scale, motivating the development and testing of μ ECoG for basic and clinical neurophysiology as well as towards the realization of high-performance neural prostheses.
亚毫米级脑电图对人类认知神经状态具有更高的保真度,是临床神经生理学、基础神经生理学研究的重要测量手段,对开发用于辅助应用和神经系统疾病治疗的神经义肢装置具有很大的前景。设备工程的最新进展准备使ECoG的分辨率增加数量级,而不影响测量质量。这种皮层感知的增强使我们能够在微米尺度上观察皮层表面的神经动力学。虽然这些技术能力可能是可行的,但更小的空间尺度记录在多大程度上增强了与功能相关的神经状态推断尚不清楚。我们通过使用高密度和低阻抗400 μ m间距的微ECoG (μ ECoG)网格来记录认知任务期间人类皮层表面的神经活动来研究这个问题。通过应用机器学习技术从两个研究参与者收集的高频频段(70 - 170Hz)神经活动包络中对任务条件进行分类,我们证明了更高密度的网格可以导致更准确的二元任务条件分类。当控制网格面积和选择完整网格的任务信息子区域时,我们观察到随着网格密度的增加,平均分类精度一致增加;特别是,400 μ m间距网格比空间亚采样低密度网格的性能高出23%。我们还引入了一个建模框架,以直观地了解测量的空间属性如何影响高密度和低密度网格之间的性能差距。据我们所知,这项工作是人类亚毫米基音皮层表面记录的第一个定量演示,相对于毫米尺度的设备,产生了更高的保真度状态估计,推动了μ ECoG的开发和测试,用于基础和临床神经生理学,以及实现高性能神经假体。
{"title":"Estimation","authors":"S. Chinn","doi":"10.1002/9781119505969.ch6","DOIUrl":"https://doi.org/10.1002/9781119505969.ch6","url":null,"abstract":"Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state is a critical measurement for clinical neurophysiology, basic neurophysiology studies, and demonstrates great promise for the development of neural prosthetic devices for assistive applications and the treatment of neuro- logical disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the observation of neural dynamics from the cortical surface at the micrometer scale. While these technical capa-bilities may be enabling, the extent to which fi ner spatial scale recording enhances functionally relevant neural state inference is unclear. We examine this question by employing a high-density and low impedance 400 μ m pitch microECoG ( μ ECoG) grid to record neural activity from the human cortical surface during cognitive tasks. By applying machine learning techniques to classify task conditions from the envelope of high-frequency band (70 – 170Hz) neural activity collected from two study participants, we demonstrate that higher density grids can lead to more accurate binary task condition classi fi cation. When controlling for grid area and selecting task informative sub-regions of the complete grid, we observed a consistent increase in mean classi fi cation accuracy with higher grid density; in particular, 400 μ m pitch grids outperforming spatially sub-sampled lower density grids up to 23%. We also introduce a modeling framework to provide intuition for how spatial properties of measurements affect the performance gap between high and low density grids. To our knowledge, this work is the fi rst quantitative demonstration of human sub-millimeter pitch cortical surface recording yielding higher- fi delity state estimation relative to devices at the millimeter-scale, motivating the development and testing of μ ECoG for basic and clinical neurophysiology as well as towards the realization of high-performance neural prostheses.","PeriodicalId":251399,"journal":{"name":"More Trouble with Maths","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132628284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
More Trouble with Maths
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1