Pub Date : 2018-06-13DOI: 10.1201/9780429400650-11
S. Lin, M. Lin
The metal atoms, the alkali ones excepted, might provide the multiple outermost orbitals for the multi-orbital hybridizations with the out-of-plane $pi$ bondings on the honeycomb lattice. This will dominate the fundamental properties of Al-, Ti- and Bi-adsorbed graphene nanoribbons, in which they are explored thoroughly by using the first-principles calculations. The principle focuses are the adatom-dependent binding energies, the adatom-carbon lengths, the optimal position, the maximum adatom concentrations, the free electron density transferred per adatom, the adatom-related valence and conduction bands, the various van Hove singularities in DOSs, the transition-metal-induced magnetic properties, and the significant competitions of the zigzag edge carbons and the metal/transition metal adatoms in spin configurations. The distinct chemical bondings are clearly identified from three kinds of metal adatoms under the delicate physical quantities. The important differences between Al-/Ti-/Bi- and alkali-adsorbed graphene nanoribbons will be discussed in detail, covering band structures, relation of conduction electron density and adatom concentration, spatial charge distributions, orbital-decomposed DOSs, and magnetic configurations $&$ moments.
{"title":"Metal-adsorbed graphene nanoribbons","authors":"S. Lin, M. Lin","doi":"10.1201/9780429400650-11","DOIUrl":"https://doi.org/10.1201/9780429400650-11","url":null,"abstract":"The metal atoms, the alkali ones excepted, might provide the multiple outermost orbitals for the multi-orbital hybridizations with the out-of-plane $pi$ bondings on the honeycomb lattice. This will dominate the fundamental properties of Al-, Ti- and Bi-adsorbed graphene nanoribbons, in which they are explored thoroughly by using the first-principles calculations. The principle focuses are the adatom-dependent binding energies, the adatom-carbon lengths, the optimal position, the maximum adatom concentrations, the free electron density transferred per adatom, the adatom-related valence and conduction bands, the various van Hove singularities in DOSs, the transition-metal-induced magnetic properties, and the significant competitions of the zigzag edge carbons and the metal/transition metal adatoms in spin configurations. The distinct chemical bondings are clearly identified from three kinds of metal adatoms under the delicate physical quantities. The important differences between Al-/Ti-/Bi- and alkali-adsorbed graphene nanoribbons will be discussed in detail, covering band structures, relation of conduction electron density and adatom concentration, spatial charge distributions, orbital-decomposed DOSs, and magnetic configurations $&$ moments.","PeriodicalId":270540,"journal":{"name":"Structure-and Adatom-Enriched Essential Properties of Graphene Nanoribbons","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116715474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}