Pub Date : 2015-06-08DOI: 10.1109/COMET.2015.7449662
A. Ledoux, N. Richard
In this paper, we explain the construction of two color image processing tools adapted to skin analysis and diagnostic. In this aim, the non linearity of the Human Visual System must be taken into account. In color domain, only the perceptual distances meet this constraint and are validated by the International Commission on Illumination. Thanks to this consideration, we develop an image processing chain based on non linear processing, using the mathematical morphology. From morphological operators based on perceptual color distance, we developed a color object detector and a set of color texture features adapted for skin analysis and diagnosis.
{"title":"Morphology tools for color image processing, dermatology and cosmetology domain","authors":"A. Ledoux, N. Richard","doi":"10.1109/COMET.2015.7449662","DOIUrl":"https://doi.org/10.1109/COMET.2015.7449662","url":null,"abstract":"In this paper, we explain the construction of two color image processing tools adapted to skin analysis and diagnostic. In this aim, the non linearity of the Human Visual System must be taken into account. In color domain, only the perceptual distances meet this constraint and are validated by the International Commission on Illumination. Thanks to this consideration, we develop an image processing chain based on non linear processing, using the mathematical morphology. From morphological operators based on perceptual color distance, we developed a color object detector and a set of color texture features adapted for skin analysis and diagnosis.","PeriodicalId":272875,"journal":{"name":"2015 Conference on Cosmetic Measurements and Testing (COMET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130143749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-08DOI: 10.1109/COMET.2015.7449661
N. Wilkie-Chancellier, R. Besse, J. Le Huerou, S. Serfaty
This presented work shows the ability for this method to monitor the encapsulation process for fragrance delivery. The encapsulation is based on the coacervation principle which consists in the chemical reaction between two water soluble polyelectrolytic polymers with opposite charges. An experimental protocol is performed with precise conditions of temperature and acidity to form, during the process, elastic micro-shells encapsulating the fragrance. Thus, in this paper, the new ultrasonic technic is presented. It is based on the resonance of an AT cut quartz sensor. When the sensor is loaded, using the shear wave propagation in the complex fluid, the mechanical impedance of the material is extracted from the modification of the resonance parameters [1]. A complete on-line monitoring can then be carried out during the encapsulation process. The obtained results allow focusing the different steps of the encapsulation. This new system is inexpensive and easily adaptable to industrial conditions. It is robust in aggressive conditions. The evolution is to make this system remotely controlled.
{"title":"New ultrasonic technic for on-line encapsulation monitoring","authors":"N. Wilkie-Chancellier, R. Besse, J. Le Huerou, S. Serfaty","doi":"10.1109/COMET.2015.7449661","DOIUrl":"https://doi.org/10.1109/COMET.2015.7449661","url":null,"abstract":"This presented work shows the ability for this method to monitor the encapsulation process for fragrance delivery. The encapsulation is based on the coacervation principle which consists in the chemical reaction between two water soluble polyelectrolytic polymers with opposite charges. An experimental protocol is performed with precise conditions of temperature and acidity to form, during the process, elastic micro-shells encapsulating the fragrance. Thus, in this paper, the new ultrasonic technic is presented. It is based on the resonance of an AT cut quartz sensor. When the sensor is loaded, using the shear wave propagation in the complex fluid, the mechanical impedance of the material is extracted from the modification of the resonance parameters [1]. A complete on-line monitoring can then be carried out during the encapsulation process. The obtained results allow focusing the different steps of the encapsulation. This new system is inexpensive and easily adaptable to industrial conditions. It is robust in aggressive conditions. The evolution is to make this system remotely controlled.","PeriodicalId":272875,"journal":{"name":"2015 Conference on Cosmetic Measurements and Testing (COMET)","volume":"632 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114001632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-08DOI: 10.1109/COMET.2015.7449660
D. Iakovidis
Digital image processing and analysis of medical images can effectively support medical diagnosis with valuable tools including automatic detection, recognition segmentation and measurement of visible entities of interest. This paper provides an overview of related clinical applications with focus on the analysis of skin disorders, extending to the limitedly explored field of cosmetics. Innovative applications and challenges are identified with respect to tissue quality and ageing measurement, as well as cosmetic recommendation systems. The impacts of research towards this direction could extend beyond the cosmetics industry.
{"title":"Digital image processing: clinical applications and challenges in cosmetics","authors":"D. Iakovidis","doi":"10.1109/COMET.2015.7449660","DOIUrl":"https://doi.org/10.1109/COMET.2015.7449660","url":null,"abstract":"Digital image processing and analysis of medical images can effectively support medical diagnosis with valuable tools including automatic detection, recognition segmentation and measurement of visible entities of interest. This paper provides an overview of related clinical applications with focus on the analysis of skin disorders, extending to the limitedly explored field of cosmetics. Innovative applications and challenges are identified with respect to tissue quality and ageing measurement, as well as cosmetic recommendation systems. The impacts of research towards this direction could extend beyond the cosmetics industry.","PeriodicalId":272875,"journal":{"name":"2015 Conference on Cosmetic Measurements and Testing (COMET)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123872508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-08DOI: 10.1109/COMET.2015.7449664
Xi Zhou, B. Roucaries, R. Besse, P. Griesmar
Hyaluronic acid (HA) is present in almost all biological fluids and tissues. The chemical HA structure is described as a linear polysaccharide with a high molecular mass (about one MDa) formed from disaccharide units containing Nacetyl-d-glucosamine and glucuronic acid. This chemical structure ensures an excellent biocompatibility. In addition its viscoelastic properties are singularly appreciated in cosmetic products like moisturizing preparations, anti-wrinkle effect cream (for the elasticity restoration) [1], and skin protection against ultraviolet irradiation [2]. HA is usually produced from non-sustainable resource, or from genetically modified (GMO) bacteria, or from animal waste [3]. A novel method production of this high value product (more than 100 k€/kg [4]) had recently emerged based on microalgae production process [5]. In order to be competitive, users of this new manufacturing method need to assess in-line the quality of the product and if it possible use this information for product quality optimization. Electromagnetic sensors are well known in the food industry for reliability and quick quality assessment of hydrocarbon based food like wheat [6]. This paper reports some preliminary results on microalgae by product of an electromagnetic wideband radiofrequency sensor. This sensor consists of an open coaxial line cell filled with a liquid solution and impedance measurement of the cell is carried by an network analyzer at a temperature of 25°C. The microalgae studied where separated in two phases, a liquid one extracted directly from the reactor (MC) and a foam like extracted by an in-reactor skimmer (ME). In order to assess the sensibility of the measurement and simulate different production yield, extracted fraction MC and ME where diluted. These dilutions were carried with respectively microalgae nutriment solution (NS) and pure water in order to keep a constant ionic strength to achieve the low frequency conductivity constant and to avoid a measurement bias. The preliminary results show a good sensitivity of impedance vs HA microalgae concentration in the 1 MHz to 10 MHz range.
{"title":"New wideband electromagnatic on-line system for microalgae production monitoring","authors":"Xi Zhou, B. Roucaries, R. Besse, P. Griesmar","doi":"10.1109/COMET.2015.7449664","DOIUrl":"https://doi.org/10.1109/COMET.2015.7449664","url":null,"abstract":"Hyaluronic acid (HA) is present in almost all biological fluids and tissues. The chemical HA structure is described as a linear polysaccharide with a high molecular mass (about one MDa) formed from disaccharide units containing Nacetyl-d-glucosamine and glucuronic acid. This chemical structure ensures an excellent biocompatibility. In addition its viscoelastic properties are singularly appreciated in cosmetic products like moisturizing preparations, anti-wrinkle effect cream (for the elasticity restoration) [1], and skin protection against ultraviolet irradiation [2]. HA is usually produced from non-sustainable resource, or from genetically modified (GMO) bacteria, or from animal waste [3]. A novel method production of this high value product (more than 100 k€/kg [4]) had recently emerged based on microalgae production process [5]. In order to be competitive, users of this new manufacturing method need to assess in-line the quality of the product and if it possible use this information for product quality optimization. Electromagnetic sensors are well known in the food industry for reliability and quick quality assessment of hydrocarbon based food like wheat [6]. This paper reports some preliminary results on microalgae by product of an electromagnetic wideband radiofrequency sensor. This sensor consists of an open coaxial line cell filled with a liquid solution and impedance measurement of the cell is carried by an network analyzer at a temperature of 25°C. The microalgae studied where separated in two phases, a liquid one extracted directly from the reactor (MC) and a foam like extracted by an in-reactor skimmer (ME). In order to assess the sensibility of the measurement and simulate different production yield, extracted fraction MC and ME where diluted. These dilutions were carried with respectively microalgae nutriment solution (NS) and pure water in order to keep a constant ionic strength to achieve the low frequency conductivity constant and to avoid a measurement bias. The preliminary results show a good sensitivity of impedance vs HA microalgae concentration in the 1 MHz to 10 MHz range.","PeriodicalId":272875,"journal":{"name":"2015 Conference on Cosmetic Measurements and Testing (COMET)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132076875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-08DOI: 10.1109/COMET.2015.7449663
R. Besse, S. Serfaty, J. Le Huerou, E. Lati
This study presents a new online skin investigation technique for tracking products-to-skin mechanical effects. Ex vivo abdominal skin explants from plastic surgery and kept alive are used for this study. Considering the skin as a complex fluid made of membrane and fiber structures immersed in liquid, its mechanical response of a bulk thickness shear wave excitation (i.e. stress-strain analysis) involves both a viscous component associated with energy dissipation and an elastic component associated with energy storage. A tight monitoring of these two components from the response of a TSM sensor (based on an AT cut quartz resonator at 5 MHz) in contact to the dermis of the ex vivo explant give us access to the complex dynamic shear moduli (G' and G") evolution of the skin; The appropriate mechanical model describing the sensor response vs. shear waves/matrix interactions allows investigating the impact of the product (or treatment) to the viscoelastic properties of the skin. The complex study of the TSM response in time domain permits a control a) of the dehydration evolution at 37 °C due to interpenetrated intercellular lipid membranes matrix including the first step of permeation process from dermis to SC; b) the impact on the kinetics of the permeation process by a product applied at the SC surface. This information includes the structure and properties evolution of the collagen and elastic fibers and the proteoglycans located in the skin. A comparison of mechanical results with other techniques in the literature confirms the validity of the model. These preliminary results show that our TSM technique can be an appreciable new way for ex vivo skin investigation for test and optimization of new cosmetic products.
{"title":"Ex vivo TSM online monitoring of skin dehydration","authors":"R. Besse, S. Serfaty, J. Le Huerou, E. Lati","doi":"10.1109/COMET.2015.7449663","DOIUrl":"https://doi.org/10.1109/COMET.2015.7449663","url":null,"abstract":"This study presents a new online skin investigation technique for tracking products-to-skin mechanical effects. Ex vivo abdominal skin explants from plastic surgery and kept alive are used for this study. Considering the skin as a complex fluid made of membrane and fiber structures immersed in liquid, its mechanical response of a bulk thickness shear wave excitation (i.e. stress-strain analysis) involves both a viscous component associated with energy dissipation and an elastic component associated with energy storage. A tight monitoring of these two components from the response of a TSM sensor (based on an AT cut quartz resonator at 5 MHz) in contact to the dermis of the ex vivo explant give us access to the complex dynamic shear moduli (G' and G\") evolution of the skin; The appropriate mechanical model describing the sensor response vs. shear waves/matrix interactions allows investigating the impact of the product (or treatment) to the viscoelastic properties of the skin. The complex study of the TSM response in time domain permits a control a) of the dehydration evolution at 37 °C due to interpenetrated intercellular lipid membranes matrix including the first step of permeation process from dermis to SC; b) the impact on the kinetics of the permeation process by a product applied at the SC surface. This information includes the structure and properties evolution of the collagen and elastic fibers and the proteoglycans located in the skin. A comparison of mechanical results with other techniques in the literature confirms the validity of the model. These preliminary results show that our TSM technique can be an appreciable new way for ex vivo skin investigation for test and optimization of new cosmetic products.","PeriodicalId":272875,"journal":{"name":"2015 Conference on Cosmetic Measurements and Testing (COMET)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116661023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}