Pub Date : 2019-10-02DOI: 10.5772/intechopen.84626
X. Dai, Yongming Xiong, Na Li, Can Jian
There are several different types of vaccines. Each type is designed to teach your immune system how to fight off certain kinds of germs and the serious diseases they cause. There are four main types of vaccines: live attenuated vaccines; inactivated vaccines; subunit, recombinant, polysaccharide, and conjugate vaccines; and toxoid vaccines.
{"title":"Vaccine Types","authors":"X. Dai, Yongming Xiong, Na Li, Can Jian","doi":"10.5772/intechopen.84626","DOIUrl":"https://doi.org/10.5772/intechopen.84626","url":null,"abstract":"There are several different types of vaccines. Each type is designed to teach your immune system how to fight off certain kinds of germs and the serious diseases they cause. There are four main types of vaccines: live attenuated vaccines; inactivated vaccines; subunit, recombinant, polysaccharide, and conjugate vaccines; and toxoid vaccines.","PeriodicalId":280453,"journal":{"name":"Vaccines - the History and Future","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115477037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-02DOI: 10.5772/intechopen.86274
K. Vijay
{"title":"Introductory Chapter: The Journey of Vaccines - The Past and the Present","authors":"K. Vijay","doi":"10.5772/intechopen.86274","DOIUrl":"https://doi.org/10.5772/intechopen.86274","url":null,"abstract":"","PeriodicalId":280453,"journal":{"name":"Vaccines - the History and Future","volume":"737 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122950825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-16DOI: 10.5772/INTECHOPEN.85302
D. M. Oliveira, Jonatan Marques Campos, S. O. Silva, M. N. Melo
Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the diseases has become a high priority. The development of vaccines against the various species of pathogenic Leishmania to humans has been hampered, in part, by the inefficient stimulation of the protective cellular immunity promoted by the administration of purified or recombinant antigens, indicating the need for new approaches. Viral vectors represent an attractive way to deliver and present vaccine antigens that may offer advantages over traditional platforms. Among the most attractive and efficient viral vectors in inducing a cellular immune response, vaccinia virus has been the most used in leishmaniases vaccine trials. The first report of the use of recombinant vaccinia virus (VACV) in the induction of protection against Leishmania infection was made in 1993. Since then, several Leishmania spp . antigenic subunits were cloned into recombinant VACV. Although highly attenuated poxviral vectors are capable of inducing protective immunity against Leishmania spp., their limitation in replicative capacity reduces their potential as compared to replicative vectors. In order to achieve a balance between safety and replication, several VACV strains with intermediate phenotype have been developed.
{"title":"Vaccinia Virus-Derived Vectors in Leishmaniases Vaccine Development","authors":"D. M. Oliveira, Jonatan Marques Campos, S. O. Silva, M. N. Melo","doi":"10.5772/INTECHOPEN.85302","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85302","url":null,"abstract":"Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the diseases has become a high priority. The development of vaccines against the various species of pathogenic Leishmania to humans has been hampered, in part, by the inefficient stimulation of the protective cellular immunity promoted by the administration of purified or recombinant antigens, indicating the need for new approaches. Viral vectors represent an attractive way to deliver and present vaccine antigens that may offer advantages over traditional platforms. Among the most attractive and efficient viral vectors in inducing a cellular immune response, vaccinia virus has been the most used in leishmaniases vaccine trials. The first report of the use of recombinant vaccinia virus (VACV) in the induction of protection against Leishmania infection was made in 1993. Since then, several Leishmania spp . antigenic subunits were cloned into recombinant VACV. Although highly attenuated poxviral vectors are capable of inducing protective immunity against Leishmania spp., their limitation in replicative capacity reduces their potential as compared to replicative vectors. In order to achieve a balance between safety and replication, several VACV strains with intermediate phenotype have been developed.","PeriodicalId":280453,"journal":{"name":"Vaccines - the History and Future","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127201314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, emerging viruses such as arboviruses, flaviviruses, filovirus, and orthohepeviruses are important agents of emerging zoonoses in public health, because their cycles are maintained in the nature or wildlife, involving hematophagous arthropod vectors and a wide range of vertebrate hosts as the bats. Development of blocking-transmission vaccines against these emerging viruses in wildlife will allow disease control at the veterinary field, preventing emerging human viral infections.
{"title":"Vaccines Targeted to Zoonotic Viral Infections in the Wildlife: Potentials, Limitations, and Future Directions","authors":"Salas-Rojas Mónica, Gálvez-Romero Guillermo, Pompa-Mera Ericka Nelly","doi":"10.5772/INTECHOPEN.84765","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84765","url":null,"abstract":"Currently, emerging viruses such as arboviruses, flaviviruses, filovirus, and orthohepeviruses are important agents of emerging zoonoses in public health, because their cycles are maintained in the nature or wildlife, involving hematophagous arthropod vectors and a wide range of vertebrate hosts as the bats. Development of blocking-transmission vaccines against these emerging viruses in wildlife will allow disease control at the veterinary field, preventing emerging human viral infections.","PeriodicalId":280453,"journal":{"name":"Vaccines - the History and Future","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116607125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-03DOI: 10.5772/INTECHOPEN.85341
A. Leunda, K. Pauwels
Recent scientific and technical developments create novel opportunities for vaccine development. Regulatory compliance has to be ensured from preclinical research to market authorization, whereby different legal frameworks that go beyond quality, efficacy or patient safety aspects need to be taken into account. As academia and start-ups are often focused on gathering scientific evidence, the regulatory maze is often regarded by applicants as challenging in the overall pathway to clinical translation. This is particularly true for applications concerning vaccine candidates containing or consisting of genetically modified organisms (GMOs). Active communication between applicants and competent authorities or advisory bodies early in the development stages facilitates a correct implementation of the regulatory frameworks and is of utmost importance to identify challenges or hurdles in order to avoid unnecessary delay in scientific review. Based on the state-of-play in Belgium, this chapter discusses examples of regulatory journeys of applications with genetically modified viral vectors and novel vaccine candidates that have been reviewed by GMO national competent authorities in Belgium and in Europe. They highlight the need of having a comprehensive view of global perspec-tives early in the development to facilitate the translation of research to clinical development or even market authorization.
{"title":"GMO Regulatory Aspects of Novel Investigational Vaccine Candidates","authors":"A. Leunda, K. Pauwels","doi":"10.5772/INTECHOPEN.85341","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85341","url":null,"abstract":"Recent scientific and technical developments create novel opportunities for vaccine development. Regulatory compliance has to be ensured from preclinical research to market authorization, whereby different legal frameworks that go beyond quality, efficacy or patient safety aspects need to be taken into account. As academia and start-ups are often focused on gathering scientific evidence, the regulatory maze is often regarded by applicants as challenging in the overall pathway to clinical translation. This is particularly true for applications concerning vaccine candidates containing or consisting of genetically modified organisms (GMOs). Active communication between applicants and competent authorities or advisory bodies early in the development stages facilitates a correct implementation of the regulatory frameworks and is of utmost importance to identify challenges or hurdles in order to avoid unnecessary delay in scientific review. Based on the state-of-play in Belgium, this chapter discusses examples of regulatory journeys of applications with genetically modified viral vectors and novel vaccine candidates that have been reviewed by GMO national competent authorities in Belgium and in Europe. They highlight the need of having a comprehensive view of global perspec-tives early in the development to facilitate the translation of research to clinical development or even market authorization.","PeriodicalId":280453,"journal":{"name":"Vaccines - the History and Future","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131159364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-24DOI: 10.5772/INTECHOPEN.83351
I. Raw
Since the introduction of vaccines, governments learn that they are the most efficient and inexpensive tool to avoid the spreading of infectious diseases. It resulted in the creation of public research institutes to develop new vaccines, which gave birth to the vaccine industry, that is, growing in size by acquisition of competitors, which estimate that in 2019 they will sell $58 billion, where developing countries represent 80% of the world population, submitted to be dependent of production and prices from large producers. Incapable or not willing to assume the responsibility to produce, accept to purchase vaccines in bulk for filling and labeling as “producers.” Butantan, a public not for profit institute became the first producer of specific anti-venoms and anti-rabies sera. In 1985, Butantan Center of Biotechnology attracted 25 young PhD, which accepted to carry on inovations and technical developments, setting dedicated plants to produce vaccines at affordable cost, aiming self-sufficiency to distribute free through the Ministry of Health. This chapter describes problems and solutions that must be faced to produce vaccine at a cost that developing countries can afford.
{"title":"Developing Countries Can Innovate and Produce Vaccines: The Case of Butantan in Brazil","authors":"I. Raw","doi":"10.5772/INTECHOPEN.83351","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83351","url":null,"abstract":"Since the introduction of vaccines, governments learn that they are the most efficient and inexpensive tool to avoid the spreading of infectious diseases. It resulted in the creation of public research institutes to develop new vaccines, which gave birth to the vaccine industry, that is, growing in size by acquisition of competitors, which estimate that in 2019 they will sell $58 billion, where developing countries represent 80% of the world population, submitted to be dependent of production and prices from large producers. Incapable or not willing to assume the responsibility to produce, accept to purchase vaccines in bulk for filling and labeling as “producers.” Butantan, a public not for profit institute became the first producer of specific anti-venoms and anti-rabies sera. In 1985, Butantan Center of Biotechnology attracted 25 young PhD, which accepted to carry on inovations and technical developments, setting dedicated plants to produce vaccines at affordable cost, aiming self-sufficiency to distribute free through the Ministry of Health. This chapter describes problems and solutions that must be faced to produce vaccine at a cost that developing countries can afford.","PeriodicalId":280453,"journal":{"name":"Vaccines - the History and Future","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121904049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}