首页 > 最新文献

Jurnal Siger Matematika最新文献

英文 中文
Perbandingan Metode Bootstrap, Jacknife Jiang Dan Area Specific Jacknife Pada Pendugaan Mean Square Error Model Beta-Bernoulli Perbandingan方法Bootstrap, Jacknife江丹区域特定Jacknife Pada Pendugaan均方误差模型β -伯努利
Pub Date : 2021-03-31 DOI: 10.23960/JSM.V2I1.2756
Yesi Santika, Widiarti Widiarti, Fitriani Fitriani, M. Usman
Small area estimation is defined as a statistical technique for estimating the parameters of a subpopulation with a small sample size. One method of estimating small area parameters is the Empirical Bayes (EB) method. The accuracy of the Empirical Bayes (EB) estimator can be measured by evaluating the Mean Squared Error (MSE). In this study, 3 methods to determine MSE in the EB estimator of the Beta-Bernoulli model will be compared, namely the Bootstrap, Jackknife Jiang and Area-specific Jackknife methods. The study is carried out theoretically and empirically through simulation with R-studio software version 1.2.5033. The simulation results in a number of areas and pairs of prior distribution parameter values, namely Beta, show the effect of sample size and parameter value pairs on the Mean Square Error (MSE) value. The larger the number of areas and the smaller the initial 𝛽, the smaller the MSE value. The area-specific Jackknife method produces the smallest MSE in the number of areas 100 and the Beta parameter value 0.1.
小面积估计是一种估计小样本量亚种群参数的统计方法。一种估计小面积参数的方法是经验贝叶斯(EB)方法。经验贝叶斯(Empirical Bayes, EB)估计的精度可以通过均方误差(Mean Squared Error, MSE)来衡量。本文将比较3种确定β - bernoulli模型EB估计量MSE的方法,即Bootstrap、Jackknife Jiang和Area-specific Jackknife方法。采用R-studio软件版本1.2.5033进行仿真,从理论和实证两方面进行了研究。在多个区域和对先验分布参数值Beta的模拟结果中,显示了样本量和参数值对对均方误差(MSE)值的影响。区域数越大,初始值越小,MSE值越小。区域特定的Jackknife方法在区域数100和Beta参数值0.1中产生最小的MSE。
{"title":"Perbandingan Metode Bootstrap, Jacknife Jiang Dan Area Specific Jacknife Pada Pendugaan Mean Square Error Model Beta-Bernoulli","authors":"Yesi Santika, Widiarti Widiarti, Fitriani Fitriani, M. Usman","doi":"10.23960/JSM.V2I1.2756","DOIUrl":"https://doi.org/10.23960/JSM.V2I1.2756","url":null,"abstract":"Small area estimation is defined as a statistical technique for estimating the parameters of a subpopulation with a small sample size. One method of estimating small area parameters is the Empirical Bayes (EB) method. The accuracy of the Empirical Bayes (EB) estimator can be measured by evaluating the Mean Squared Error (MSE). In this study, 3 methods to determine MSE in the EB estimator of the Beta-Bernoulli model will be compared, namely the Bootstrap, Jackknife Jiang and Area-specific Jackknife methods. The study is carried out theoretically and empirically through simulation with R-studio software version 1.2.5033. The simulation results in a number of areas and pairs of prior distribution parameter values, namely Beta, show the effect of sample size and parameter value pairs on the Mean Square Error (MSE) value. The larger the number of areas and the smaller the initial 𝛽, the smaller the MSE value. The area-specific Jackknife method produces the smallest MSE in the number of areas 100 and the Beta parameter value 0.1.","PeriodicalId":286978,"journal":{"name":"Jurnal Siger Matematika","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123779597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peramalan Data Runtun Waktu menggunakan Model Hybrid Time Series Regression – Autoregressive Integrated Moving Average Runtun Waktu menggunakan模型混合时间序列回归-自回归综合移动平均
Pub Date : 2021-03-31 DOI: 10.23960/JSM.V2I1.2736
Melisa Arumsari, A. Dani
Forecasting is a method used to estimate or predict a value in the future using data from the past. With the development of methods in time series data analysis, a hybrid method was developed in which a combination of several models was carried out in order to produce a more accurate forecast. The purpose of this study was to determine whether the TSR-ARIMA hybrid method has a better level of accuracy than the individual TSR method so that more accurate forecasting results are obtained. The data in this study are monthly data on the number of passengers on American airlines for the period January 1949 to December 1960. Based on the analysis, the TSR-ARIMA hybrid method produces a MAPE of 3,061% and the TSR method produces an MAPE of 7,902%.
预测是一种利用过去的数据来估计或预测未来价值的方法。随着时间序列数据分析方法的发展,为了获得更准确的预测结果,提出了一种混合方法,即将多个模型组合在一起进行预测。本研究的目的是确定TSR- arima混合方法是否比单个TSR方法具有更好的精度水平,从而获得更准确的预测结果。本研究中的数据是1949年1月至1960年12月期间美国航空公司乘客人数的月度数据。通过分析,TSR- arima混合方法的MAPE为3061%,TSR方法的MAPE为7902%。
{"title":"Peramalan Data Runtun Waktu menggunakan Model Hybrid Time Series Regression – Autoregressive Integrated Moving Average","authors":"Melisa Arumsari, A. Dani","doi":"10.23960/JSM.V2I1.2736","DOIUrl":"https://doi.org/10.23960/JSM.V2I1.2736","url":null,"abstract":"Forecasting is a method used to estimate or predict a value in the future using data from the past. With the development of methods in time series data analysis, a hybrid method was developed in which a combination of several models was carried out in order to produce a more accurate forecast. The purpose of this study was to determine whether the TSR-ARIMA hybrid method has a better level of accuracy than the individual TSR method so that more accurate forecasting results are obtained. The data in this study are monthly data on the number of passengers on American airlines for the period January 1949 to December 1960. Based on the analysis, the TSR-ARIMA hybrid method produces a MAPE of 3,061% and the TSR method produces an MAPE of 7,902%.","PeriodicalId":286978,"journal":{"name":"Jurnal Siger Matematika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129709727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
SIMULATION OF ROBOT MOVEMENT IN 2-DIMENSIONAL SPACE USING FUZZY-PARTICLE SWARM OPTIMIZATION 基于模糊粒子群算法的二维机器人运动仿真
Pub Date : 2020-03-31 DOI: 10.23960/jsm.v1i1.2487
I. Irianto, Tan Hauw-Sen
Nowdays, the use of a group of autonomous robots are grown increasingly, especially for an application dealing with hazardous material and or dangerous situation. In this case, autonomous robot movement where there is no interference from a human on the execution process is very important. The concern is how this group of autonomous robots could arrive as fast as possible to the target location to perform the tasks given. If it includes the movement of groups of autonomous robots then particle swarm optimization (PSO) is one of a simple yet powerful method available. Fuzzy logic as a logic system has been proven can be combined with various numbers of applications or methods to get a more optimal result. One of them is the combination of fuzzy logic with PSO method. This paper implemented the fuzzy-PSO optimization method to simulate a group of robots movement to the target location using scratch programming. The fuzzy-PSO optimization results, then compared to the results of classic PSO optimization. It is found that the robots with fuzzy-PSO optimization movement arrived at the location target in average more than 40% faster compared to the robots with classic PSO optimization movement.
如今,一组自主机器人的使用越来越多,特别是在处理危险材料和/或危险情况的应用中。在这种情况下,在执行过程中不受人类干扰的自主机器人运动是非常重要的。人们关心的是这组自主机器人如何尽可能快地到达目标位置执行给定的任务。粒子群优化(PSO)是一种简单而有效的方法。模糊逻辑作为一种逻辑系统已经被证明可以与各种数量的应用或方法相结合以获得更优的结果。其中一种是模糊逻辑与粒子群算法的结合。本文利用scratch编程实现了模糊粒子群优化方法来模拟一组机器人运动到目标位置。然后将模糊粒子群优化结果与经典粒子群优化结果进行比较。研究发现,采用模糊粒子群优化运动的机器人到达定位目标的速度比采用经典粒子群优化运动的机器人平均快40%以上。
{"title":"SIMULATION OF ROBOT MOVEMENT IN 2-DIMENSIONAL SPACE USING FUZZY-PARTICLE SWARM OPTIMIZATION","authors":"I. Irianto, Tan Hauw-Sen","doi":"10.23960/jsm.v1i1.2487","DOIUrl":"https://doi.org/10.23960/jsm.v1i1.2487","url":null,"abstract":"Nowdays, the use of a group of autonomous robots are grown increasingly, especially for an application dealing with hazardous material and or dangerous situation. In this case, autonomous robot movement where there is no interference from a human on the execution process is very important. The concern is how this group of autonomous robots could arrive as fast as possible to the target location to perform the tasks given. If it includes the movement of groups of autonomous robots then particle swarm optimization (PSO) is one of a simple yet powerful method available. Fuzzy logic as a logic system has been proven can be combined with various numbers of applications or methods to get a more optimal result. One of them is the combination of fuzzy logic with PSO method. This paper implemented the fuzzy-PSO optimization method to simulate a group of robots movement to the target location using scratch programming. The fuzzy-PSO optimization results, then compared to the results of classic PSO optimization. It is found that the robots with fuzzy-PSO optimization movement arrived at the location target in average more than 40% faster compared to the robots with classic PSO optimization movement.","PeriodicalId":286978,"journal":{"name":"Jurnal Siger Matematika","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129139204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral 利用光谱分析方法分析时间序列序列
Pub Date : 2020-03-31 DOI: 10.23960/jsm.v1i1.2484
Anis Mahfud Al’afi, Widiarti Widiarti, D. Kurniasari, M. Usman
Air transportation is now a mode of transportation that is often the first choice. Although the transportation costs are relatively expensive, it can save a lot of time to get to the destination. Therefore, predicting the number of aircraft passengers is an interesting thing to study. In this study forecasting the number of aircraft passengers at Raden Intan II Airport using spectral analysis methods. Spectral analysis is used to obtain more complete information about the time series data characteristics to examine the periodicity. After getting the periodicity the data is modeled using the ARIMA Seasonal Method . Based on the analysis results it is known that the best model for forecasting aircraft passengers at Raden Intan II Airport is Seasonal ARIMA (0,1,1) (0,1,1) 3
航空运输现在是一种运输方式,往往是首选。虽然运输费用相对昂贵,但它可以节省很多时间到达目的地。因此,预测飞机乘客的数量是一件有趣的事情。本研究使用谱分析方法预测Raden Intan II机场的飞机乘客数量。谱分析是用来获得时间序列数据特征的更完整的信息,以检验其周期性。在得到数据的周期性后,采用ARIMA季节性方法对数据进行建模。根据分析结果可知,预测Raden Intan II机场飞机客流量的最佳模型是Seasonal ARIMA (0,1,1) (0,1,1) 3
{"title":"Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral","authors":"Anis Mahfud Al’afi, Widiarti Widiarti, D. Kurniasari, M. Usman","doi":"10.23960/jsm.v1i1.2484","DOIUrl":"https://doi.org/10.23960/jsm.v1i1.2484","url":null,"abstract":"Air transportation is now a mode of transportation that is often the first choice. Although the transportation costs are relatively expensive, it can save a lot of time to get to the destination. Therefore, predicting the number of aircraft passengers is an interesting thing to study. In this study forecasting the number of aircraft passengers at Raden Intan II Airport using spectral analysis methods. Spectral analysis is used to obtain more complete information about the time series data characteristics to examine the periodicity. After getting the periodicity the data is modeled using the ARIMA Seasonal Method . Based on the analysis results it is known that the best model for forecasting aircraft passengers at Raden Intan II Airport is Seasonal ARIMA (0,1,1) (0,1,1) 3","PeriodicalId":286978,"journal":{"name":"Jurnal Siger Matematika","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125684390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Penentuan Skewness Pada Graf Lengkap Kn Dengan Menggunakan Mathematica 用Mathematica完成Kn
Pub Date : 2020-03-31 DOI: 10.23960/jsm.v1i1.2453
Subian Saidi, A. Faisol
Penentuan skewness pada graf  lengkap Kn dilakukan dengan cara menggambar kembali graf tersebut sedemikian sehingga menjadi planar dan kemudian menghitung jumlah edge yang pengambarannnya mengakibatkan graf tersebut menjadi tidak planar . Penentuan skewness pada graf lengkap Kn secara manual sangat tidak efisien untuk n yang besar. Oleh karena itu, penetuan skewness pada graf lengkap Kn perlu dilakukan secara komputasi.  Dalam penelitian ini dilakukan penentuan skewness pada graf lengkap Kn secara komputasi dengan menggunakan perangkat lunak Mathematica . Selain hasilnya lebih efektif dan efisien juga dapat ditemukan berapa banyak cara pembuangan edge pada graf lengkap Kn agar graf tersebut menjadi planar .
在格拉芙上完成的草图是通过将格拉芙重新绘制成平面,然后计算其与边缘的数量,从而使格拉比慢下来。单手书写完整笔画中的草图对大n来说是非常低效的。因此,在纯格拉夫中提取草图需要计算。在这项研究中,通过使用Mathematica软件进行了计算知识分析。除了效果更有效的研究之外,还可以在纯知识中找到多少种处置边缘的方法,使其成为平面。
{"title":"Penentuan Skewness Pada Graf Lengkap Kn Dengan Menggunakan Mathematica","authors":"Subian Saidi, A. Faisol","doi":"10.23960/jsm.v1i1.2453","DOIUrl":"https://doi.org/10.23960/jsm.v1i1.2453","url":null,"abstract":"Penentuan skewness pada graf  lengkap Kn dilakukan dengan cara menggambar kembali graf tersebut sedemikian sehingga menjadi planar dan kemudian menghitung jumlah edge yang pengambarannnya mengakibatkan graf tersebut menjadi tidak planar . Penentuan skewness pada graf lengkap Kn secara manual sangat tidak efisien untuk n yang besar. Oleh karena itu, penetuan skewness pada graf lengkap Kn perlu dilakukan secara komputasi.  Dalam penelitian ini dilakukan penentuan skewness pada graf lengkap Kn secara komputasi dengan menggunakan perangkat lunak Mathematica . Selain hasilnya lebih efektif dan efisien juga dapat ditemukan berapa banyak cara pembuangan edge pada graf lengkap Kn agar graf tersebut menjadi planar .","PeriodicalId":286978,"journal":{"name":"Jurnal Siger Matematika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128814953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Jurnal Siger Matematika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1