首页 > 最新文献

Jurnal Energi dan Lingkungan (Enerlink)最新文献

英文 中文
PEMILIHAN FONDASI CSTR UNTUK PRODUKSI BIOGAS DARI POME DALAM RANGKA MENINGKATKAN PENGEMBANGAN ENERGI TERBARUKAN 为促进可再生能源的发展,从POME生产沼气为基础的CSTR选举
Pub Date : 2020-12-28 DOI: 10.29122/jel.v16i2.4803
H. Hidayat, Samdi Yarsono, Imaduddin Haq, K. K. Ola, Agus Hadi Santosa Wargadipura, W. Wulandari, Bambang Muharto
Renewable energy development for power generation is in line with the government's program toincrease the share of renewable energy in the national energy mix which is relatively small at themoment. BPPT, collaborating with PTPN 5 in the Insinas Flagship program, built a pilot plant for biogasproduction from Palm Oil Mill Effluent (POME) with a capacity of 700 kW. The reactor used in this pilotproject is a Continuous Stirred Tank Reactor (CSTR) which is the most important operating unit forproducing biogas from POME. Therefore, the selection of the CSTR foundation is crucial since themain process occurs in the reactor. The scope of this activity is to realize the final design into theconstruction of a CSTR pilot plant. Several types of foundations were studied, starting from shallowfoundation type such as tread foundation, deep foundation, until combining shallow foundation typewith deep foundation type. The evaluation of existing data and design review indicates that the use ofMat Foundation is not suitable due to soil condition at a depth of 0–5m which is in the form of sandyloam soil with an NSPT value of less than 20. The selection of Piles is based on the calculations usingtotal vertical load of 3035,37 ton and total horizontal load of 542,57 tons. Considering the availability ofmaterials and time concern, the recommended foundation type is pile with a diameter of 600 mm typeB and a length of 12 m.
可再生能源发电的发展符合政府增加可再生能源在国家能源结构中的份额的计划,目前可再生能源在国家能源结构中的份额相对较小。BPPT在Insinas旗舰项目中与PTPN 5合作,建立了一个容量为700千瓦的棕榈油厂废水(POME)沼气生产试验工厂。本中试项目采用的反应器为连续搅拌槽式反应器(CSTR),它是POME制沼气最重要的操作装置。因此,CSTR基础的选择是至关重要的,因为主要过程发生在反应器中。本次活动的范围是将最终设计转化为CSTR中试工厂的建设。研究了几种基础类型,从浅基础类型如踏面基础、深基础开始,到浅基础类型与深基础类型相结合。对现有资料的评价和设计复核表明,0 ~ 5m土层为砂质土,NSPT值小于20,不适合采用mat地基。桩的选择是根据竖向总荷载3035.37吨和水平总荷载542.57吨计算得出的。考虑到材料和时间的限制,建议采用直径600mm、长度12m的b型桩。
{"title":"PEMILIHAN FONDASI CSTR UNTUK PRODUKSI BIOGAS DARI POME DALAM RANGKA MENINGKATKAN PENGEMBANGAN ENERGI TERBARUKAN","authors":"H. Hidayat, Samdi Yarsono, Imaduddin Haq, K. K. Ola, Agus Hadi Santosa Wargadipura, W. Wulandari, Bambang Muharto","doi":"10.29122/jel.v16i2.4803","DOIUrl":"https://doi.org/10.29122/jel.v16i2.4803","url":null,"abstract":"Renewable energy development for power generation is in line with the government's program toincrease the share of renewable energy in the national energy mix which is relatively small at themoment. BPPT, collaborating with PTPN 5 in the Insinas Flagship program, built a pilot plant for biogasproduction from Palm Oil Mill Effluent (POME) with a capacity of 700 kW. The reactor used in this pilotproject is a Continuous Stirred Tank Reactor (CSTR) which is the most important operating unit forproducing biogas from POME. Therefore, the selection of the CSTR foundation is crucial since themain process occurs in the reactor. The scope of this activity is to realize the final design into theconstruction of a CSTR pilot plant. Several types of foundations were studied, starting from shallowfoundation type such as tread foundation, deep foundation, until combining shallow foundation typewith deep foundation type. The evaluation of existing data and design review indicates that the use ofMat Foundation is not suitable due to soil condition at a depth of 0–5m which is in the form of sandyloam soil with an NSPT value of less than 20. The selection of Piles is based on the calculations usingtotal vertical load of 3035,37 ton and total horizontal load of 542,57 tons. Considering the availability ofmaterials and time concern, the recommended foundation type is pile with a diameter of 600 mm typeB and a length of 12 m.","PeriodicalId":294870,"journal":{"name":"Jurnal Energi dan Lingkungan (Enerlink)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129836139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SELEKSI DESAIN ROOF TANK CSTR UNTUK PLANT BIOGAS POME SETARA 700KW Seleksi设计的屋顶储气罐CSTR untuk植物沼气池700kw
Pub Date : 2020-12-28 DOI: 10.29122/jel.v16i2.4799
Ridho Dwimansyah, Trisaksono Bagus Priambodo, Yusnitati
Indonesia is the largest palm oil producer in the world. In the process of its processing into Crude PalmOil (CPO), the palm oil processing industry produces various types of waste, including liquid wasteknown as Palm Oil Mill Effluent (POME). POME contains organic matter that is high enough so it mustbe processed before being discarded into the environment. During this time, POME is treated usinganaerobic ponds which are quite large and produce metana gas. Metanae gas has a high level ofemissions, but it potential to become an energy source if it is utilized. Therefore, BPPT in collaborationwith PT. Perkebunan Nusantara 5 built a biogas production pilot plant from POME equivalent to 700kWfor boiler fuel at PKS Sei Pagar, Kampar Regency, Riau Province. The process of converting POMEinto biogas uses Continuous Stirred Tank Reactor (CSTR) technology. The research aims to choosethe best roof tank design for CSTR. The method used is the Pahl and Beitz method and the House ofQuality. The result of the study are the best specification planning data, which is 1400 mm in diameterand the construction site position at a height of 15350 mm from the bottom of the reactor, with use aninternal support column, with the best variant chosen is the fixed roof type with dome shape.
印度尼西亚是世界上最大的棕榈油生产国。在将棕榈油加工成粗棕榈油(CPO)的过程中,棕榈油加工业会产生各种类型的废物,包括被称为棕榈油厂废水(POME)的液体废物。POME含有足够高的有机物,因此必须在丢弃到环境中之前进行处理。在此期间,POME使用厌氧池进行处理,这是相当大的,并产生甲烷。甲烷气体的排放水平很高,但如果加以利用,它有可能成为一种能源。因此,BPPT与PT. Perkebunan Nusantara 5合作,在廖内省Kampar Regency的PKS Sei Pagar建立了一个沼气生产试点工厂,该工厂使用相当于700千瓦的POME作为锅炉燃料。将pometo转化为沼气的过程使用连续搅拌槽式反应器(CSTR)技术。研究的目的是为CSTR选择最佳的顶罐设计。使用的方法是Pahl和Beitz方法和质量之家。研究结果为最佳规格规划数据,其直径为1400mm,施工现场位置距反应器底部15350mm,采用内支架柱,选择的最佳变型为圆顶型固定顶型。
{"title":"SELEKSI DESAIN ROOF TANK CSTR UNTUK PLANT BIOGAS POME SETARA 700KW","authors":"Ridho Dwimansyah, Trisaksono Bagus Priambodo, Yusnitati","doi":"10.29122/jel.v16i2.4799","DOIUrl":"https://doi.org/10.29122/jel.v16i2.4799","url":null,"abstract":"Indonesia is the largest palm oil producer in the world. In the process of its processing into Crude PalmOil (CPO), the palm oil processing industry produces various types of waste, including liquid wasteknown as Palm Oil Mill Effluent (POME). POME contains organic matter that is high enough so it mustbe processed before being discarded into the environment. During this time, POME is treated usinganaerobic ponds which are quite large and produce metana gas. Metanae gas has a high level ofemissions, but it potential to become an energy source if it is utilized. Therefore, BPPT in collaborationwith PT. Perkebunan Nusantara 5 built a biogas production pilot plant from POME equivalent to 700kWfor boiler fuel at PKS Sei Pagar, Kampar Regency, Riau Province. The process of converting POMEinto biogas uses Continuous Stirred Tank Reactor (CSTR) technology. The research aims to choosethe best roof tank design for CSTR. The method used is the Pahl and Beitz method and the House ofQuality. The result of the study are the best specification planning data, which is 1400 mm in diameterand the construction site position at a height of 15350 mm from the bottom of the reactor, with use aninternal support column, with the best variant chosen is the fixed roof type with dome shape.","PeriodicalId":294870,"journal":{"name":"Jurnal Energi dan Lingkungan (Enerlink)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115548364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KAJIAN TEKNO EKONOMI PRODUKSI BAHAN PROPILENA GLIKOL BERBASIS BIOMASSA VIA HIDROGENOLISIS GLISEROL 这是一项经济技术,通过水原甘油生产生物质素乙二醇
Pub Date : 2020-12-28 DOI: 10.29122/jel.v16i2.4800
Galuh Wirama Murti, A. Darmawan, Nesha Adelia, Nilasari, Dorit Bayu Islam Nuswantoro
Governmental policies that promote biofuels such as biodiesel have led to the generation a largeamounts of glycerol waste as a low-cost raw material. The purpose of this paper is to present a technoeconomic study on the production of biomass-based propylene glycol via glycerol hydrogenolysis,considering hydrogen feeds that partially or fully utilize renewable sources. For analysis andcalculation, computer simulations are carried out using the Aspen Hysys V11 simulator. The technoeconomic analysis is performed by modelling the propylene glycol synthesis process from glycerol,which is then used to calculate the facility capital cost and estimate operating costs to obtain an annualreturn on investment. Sensitivity analysis is also conducted for several parameters on a 36,000ton/year propylene glycol plant. The results showed the production cost was 0.76 USD/kg or 10,802IDR/kg when the hydrogen is generated from the natural gas steam-methane reforming (SMR)process. If the hydrogen is produced from the glycerol steam reforming process, which is fullyrenewable, the plant is not feasible, as indicated by a negative net present value (NPV).
政府推广生物燃料(如生物柴油)的政策导致了作为低成本原材料的甘油废料的大量产生。本文的目的是在考虑部分或全部利用可再生能源的氢原料的情况下,通过甘油氢解生产生物质基丙二醇的技术经济研究。为了进行分析和计算,使用Aspen Hysys V11模拟器进行了计算机模拟。技术经济分析是通过模拟甘油合成丙二醇的过程来进行的,然后用于计算设施的资本成本和估计运营成本,以获得年度投资回报。并对36000吨/年丙二醇装置的几个参数进行了敏感性分析。结果表明,天然气蒸汽-甲烷重整制氢的生产成本为0.76美元/kg (10802 idr /kg)。如果氢气是由甘油蒸汽重整过程产生的,这是完全可再生的,那么工厂是不可行的,正如负净现值(NPV)所表明的那样。
{"title":"KAJIAN TEKNO EKONOMI PRODUKSI BAHAN PROPILENA GLIKOL BERBASIS BIOMASSA VIA HIDROGENOLISIS GLISEROL","authors":"Galuh Wirama Murti, A. Darmawan, Nesha Adelia, Nilasari, Dorit Bayu Islam Nuswantoro","doi":"10.29122/jel.v16i2.4800","DOIUrl":"https://doi.org/10.29122/jel.v16i2.4800","url":null,"abstract":"Governmental policies that promote biofuels such as biodiesel have led to the generation a largeamounts of glycerol waste as a low-cost raw material. The purpose of this paper is to present a technoeconomic study on the production of biomass-based propylene glycol via glycerol hydrogenolysis,considering hydrogen feeds that partially or fully utilize renewable sources. For analysis andcalculation, computer simulations are carried out using the Aspen Hysys V11 simulator. The technoeconomic analysis is performed by modelling the propylene glycol synthesis process from glycerol,which is then used to calculate the facility capital cost and estimate operating costs to obtain an annualreturn on investment. Sensitivity analysis is also conducted for several parameters on a 36,000ton/year propylene glycol plant. The results showed the production cost was 0.76 USD/kg or 10,802IDR/kg when the hydrogen is generated from the natural gas steam-methane reforming (SMR)process. If the hydrogen is produced from the glycerol steam reforming process, which is fullyrenewable, the plant is not feasible, as indicated by a negative net present value (NPV).","PeriodicalId":294870,"journal":{"name":"Jurnal Energi dan Lingkungan (Enerlink)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132056098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PERANCANGAN GEOMETRI DAN POWER PENGADUK UNTUK BIOREAKTOR
Pub Date : 2020-12-28 DOI: 10.29122/jel.v16i2.4802
Novio Valentino, Dwi Lukman Hakim, Fusia Mirda Yanti
Sei Pagar's palm oil mill (PKS Sei Pagar), PTPN V Riau processes fresh fruit bunch into crude palm oil(CPO). This processing also generates waste like empty fruit bunches (EFB), shells, fiber, and palm oilmill effluent (POME). POME has a high content of chemical oxygen demand (COD), approximately30,000-80,000 mg/L, which is usually fermented by bacteria. This fermentation mechanism can beused to produce biogas containing methane in a continuous stirred tank reactor (CSTR). Since POMEor organic materials for biogas production generally contain sludge, the biogas production processshould have an agitator to mix sediment in the base reactor and improve biogas production. Thisresearch aims to determine the agitator's specifications for the biogas pilot plant in PKS Sei Pagar,consisting of power type and type of stirrer include diameter calculation, geometry, and powercalculation. The agitator's power and geometry are determined based on input data from the datasheetreactor and the efficiency of the stirrer is calculated by Reynolds reynolds numbers. From thisresearch's calculations, an agitator geometry for the biogas pilot plant in PKS Sei Pagar had a length of0.875 m, a width of 0.7 m, and a height of 3.5 m. This research also obtained that the motor power resultwas 23.55 HP. The selection of motor power in the Biogas pilot plant's stirring process in PKS Sei Pagarshould have a standard agitator motor power of 25 HP.
塞帕格的棕榈油厂(PKS塞帕格),PTPN V廖将新鲜水果串加工成粗棕榈油(CPO)。这种加工还会产生诸如空果束(EFB)、壳、纤维和棕榈油厂废水(POME)等废物。POME的化学需氧量(COD)含量高,约为30000 - 80000 mg/L,通常由细菌发酵而成。该发酵机制可用于在连续搅拌槽式反应器(CSTR)中生产含甲烷的沼气。由于用于沼气生产的POMEor有机材料通常含有污泥,因此沼气生产过程应该有一个搅拌器来混合基础反应器中的沉积物,以提高沼气产量。本研究旨在确定PKS Sei Pagar沼气中试装置的搅拌器规格,包括功率类型和搅拌器类型包括直径计算,几何形状和功率计算。搅拌器的功率和几何形状是根据数据表中的输入数据确定的,搅拌器的效率是通过雷诺数计算的。根据本研究的计算,PKS Sei Pagar沼气试验工厂的搅拌器几何形状为0.875 m长,0.7 m宽,3.5 m高。本研究还得出电机功率结果为23.55 HP。PKS Sei pagar沼气中试装置搅拌过程中电机功率的选择应采用25马力的标准搅拌电机功率。
{"title":"PERANCANGAN GEOMETRI DAN POWER PENGADUK UNTUK BIOREAKTOR","authors":"Novio Valentino, Dwi Lukman Hakim, Fusia Mirda Yanti","doi":"10.29122/jel.v16i2.4802","DOIUrl":"https://doi.org/10.29122/jel.v16i2.4802","url":null,"abstract":"Sei Pagar's palm oil mill (PKS Sei Pagar), PTPN V Riau processes fresh fruit bunch into crude palm oil(CPO). This processing also generates waste like empty fruit bunches (EFB), shells, fiber, and palm oilmill effluent (POME). POME has a high content of chemical oxygen demand (COD), approximately30,000-80,000 mg/L, which is usually fermented by bacteria. This fermentation mechanism can beused to produce biogas containing methane in a continuous stirred tank reactor (CSTR). Since POMEor organic materials for biogas production generally contain sludge, the biogas production processshould have an agitator to mix sediment in the base reactor and improve biogas production. Thisresearch aims to determine the agitator's specifications for the biogas pilot plant in PKS Sei Pagar,consisting of power type and type of stirrer include diameter calculation, geometry, and powercalculation. The agitator's power and geometry are determined based on input data from the datasheetreactor and the efficiency of the stirrer is calculated by Reynolds reynolds numbers. From thisresearch's calculations, an agitator geometry for the biogas pilot plant in PKS Sei Pagar had a length of0.875 m, a width of 0.7 m, and a height of 3.5 m. This research also obtained that the motor power resultwas 23.55 HP. The selection of motor power in the Biogas pilot plant's stirring process in PKS Sei Pagarshould have a standard agitator motor power of 25 HP.","PeriodicalId":294870,"journal":{"name":"Jurnal Energi dan Lingkungan (Enerlink)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125296475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANALISIS DAN PROYEKSI KEBUTUHAN ENERGI SEKTOR TRANSPORTASI DI INDONESIA 分析和预测印尼运输部门的能源需求
Pub Date : 2020-12-28 DOI: 10.29122/jel.v16i2.4801
Ari Paminto
Transportation is an important means for modern society to facilitate the mobility of people and goods.The transport sector consumes about 30% of the total national final energy consumption. In 2016,energy consumption in the transportation sector reached 331.7 million BOE (equivalent barrels of oil)with a fuel mix of 55.3% gasoline; 14.0% of diesel oil; 22.3% biosolar; 0.04% fuel oil, 0.07% natural gas;0.005% avgas, 8.15% aviation fuel and 0.04% electricity. The increasing demand for energy in thetransportation sector in Indonesia is largely due to the improvement and addition of transportinfrastructure in some parts of Indonesia, especially airports and the growth of low-cost airlines. In2050 it is projected that the use of gasoline and diesel oil will continue to increase with growth of 4.0%and 4.5% per year. Along with this, the growth of biodiesel continues to increase to 7.9% per year.While avtur utilization is projected to continue to grow with a growth rate of 6.8% per year.
交通运输是现代社会便利人员和货物流动的重要手段。交通运输部门消耗了全国最终能源消耗总量的30%左右。2016年,交通运输部门的能源消耗达到3.317亿桶油当量,燃料组合为55.3%的汽油;14.0%柴油;biosolar 22.3%;0.04%燃油,0.07%天然气,0.005%燃气,8.15%航空燃油,0.04%电力。印度尼西亚交通运输部门对能源的需求不断增加,主要是由于印度尼西亚一些地区交通基础设施的改善和增加,特别是机场和低成本航空公司的增长。到2050年,预计汽油和柴油的使用量将继续以每年4.0%和4.5%的速度增长。与此同时,生物柴油的年增长率继续提高到7.9%。而avtur利用率预计将继续以每年6.8%的速度增长。
{"title":"ANALISIS DAN PROYEKSI KEBUTUHAN ENERGI SEKTOR TRANSPORTASI DI INDONESIA","authors":"Ari Paminto","doi":"10.29122/jel.v16i2.4801","DOIUrl":"https://doi.org/10.29122/jel.v16i2.4801","url":null,"abstract":"Transportation is an important means for modern society to facilitate the mobility of people and goods.The transport sector consumes about 30% of the total national final energy consumption. In 2016,energy consumption in the transportation sector reached 331.7 million BOE (equivalent barrels of oil)with a fuel mix of 55.3% gasoline; 14.0% of diesel oil; 22.3% biosolar; 0.04% fuel oil, 0.07% natural gas;0.005% avgas, 8.15% aviation fuel and 0.04% electricity. The increasing demand for energy in thetransportation sector in Indonesia is largely due to the improvement and addition of transportinfrastructure in some parts of Indonesia, especially airports and the growth of low-cost airlines. In2050 it is projected that the use of gasoline and diesel oil will continue to increase with growth of 4.0%and 4.5% per year. Along with this, the growth of biodiesel continues to increase to 7.9% per year.While avtur utilization is projected to continue to grow with a growth rate of 6.8% per year.","PeriodicalId":294870,"journal":{"name":"Jurnal Energi dan Lingkungan (Enerlink)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131614254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ANALISA BIAYA PEMBANGKITAN PEMBANGKIT LISTRIK TENAGA PANAS BUMI SKALA KECIL 分析小型地热发电厂建造成本
Pub Date : 2020-07-30 DOI: 10.29122/elk.v13i2.4264
A. Budiman, Akim Windaru
Potensi panas bumi di Indonesia sangat besar. Namun demikian pengembangan panas bumi diIndonesia masih rendah. Salah satu kendala yang banyak dihadapi dalam pengembangan energipanas bumi saat ini adalah letaknya yang terisolir jauh dari beban, sehingga menyebabkan tingkatkeekonomianya kurang menarik. Tulisan ini menjelaskan biaya pembangkitan dari Pembangkit ListrikTenaga Panas Bumi (PLTP) skala kecil menggunakan tiga skenario yaitu Business as Usual (BAU),Tingkat Kandungan Dalam Negeri (TKDN) dan Clean Development Mechanism (CDM). Hasil studimenunjukkan biaya pembangkitan rata-rata untuk PLTP skala kecil adalah 15,5 cent $/kWh untukskenario BAU, 14,36 cent $/kWh untuk skenario TKDN, 14,65 cent $/kWh untuk skenario CDM dan13,51 cent $/kWh untuk skenario gabungan. Dibanding dengan Pembangkit Listrik Tenaga Disel(PLTD), PLTP skala kecil masih lebih kompetitif, dimana biaya pembangkitan PLTD skala kecil adalah17,20 cent $/kWh.Kata Kunci : PLTP skala kecil, biaya pembangkitan, BAU, TKDN, CDM
印尼的地热潜力是巨大的。然而,印尼的地热发展仍然很低。目前,地球热能发展面临的主要障碍之一是其相对于自身负担的限制,导致经济崩溃。这篇文章解释了地球热电发电厂(PLTP)的建造成本,使用三种方案,即商业as的原味(smell)、国内动产率(TKDN)和清洁开发机制(CDM)。据资料显示,一个小核电站的平均复苏成本为15.5美分/kWh的嗅觉场景,14.36美分/kWh的TKDN场景,14.65美分/kWh的CDM情况,13.51美分/kWh的合成材料。与柴油发电厂相比,小型核电站仍然具有竞争力,而小型核电站的建造成本为17.20美分/kWh。关键词:小规模PLTP,复活成本,气味,犯罪现场,CDM
{"title":"ANALISA BIAYA PEMBANGKITAN PEMBANGKIT LISTRIK TENAGA PANAS BUMI SKALA KECIL","authors":"A. Budiman, Akim Windaru","doi":"10.29122/elk.v13i2.4264","DOIUrl":"https://doi.org/10.29122/elk.v13i2.4264","url":null,"abstract":"Potensi panas bumi di Indonesia sangat besar. Namun demikian pengembangan panas bumi diIndonesia masih rendah. Salah satu kendala yang banyak dihadapi dalam pengembangan energipanas bumi saat ini adalah letaknya yang terisolir jauh dari beban, sehingga menyebabkan tingkatkeekonomianya kurang menarik. Tulisan ini menjelaskan biaya pembangkitan dari Pembangkit ListrikTenaga Panas Bumi (PLTP) skala kecil menggunakan tiga skenario yaitu Business as Usual (BAU),Tingkat Kandungan Dalam Negeri (TKDN) dan Clean Development Mechanism (CDM). Hasil studimenunjukkan biaya pembangkitan rata-rata untuk PLTP skala kecil adalah 15,5 cent $/kWh untukskenario BAU, 14,36 cent $/kWh untuk skenario TKDN, 14,65 cent $/kWh untuk skenario CDM dan13,51 cent $/kWh untuk skenario gabungan. Dibanding dengan Pembangkit Listrik Tenaga Disel(PLTD), PLTP skala kecil masih lebih kompetitif, dimana biaya pembangkitan PLTD skala kecil adalah17,20 cent $/kWh.Kata Kunci : PLTP skala kecil, biaya pembangkitan, BAU, TKDN, CDM","PeriodicalId":294870,"journal":{"name":"Jurnal Energi dan Lingkungan (Enerlink)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115743059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Jurnal Energi dan Lingkungan (Enerlink)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1