首页 > 最新文献

Proceedings of the 2008 EDBT Ph.D. workshop on - Ph.D. '08最新文献

英文 中文
Improving the accuracy of entity identification through refinement 通过精细化提高实体识别的准确性
Pub Date : 2008-03-25 DOI: 10.1145/1387150.1387157
Yue Kou
With the rapid growth of Web Databases, it is necessary to integrate large-scale data available on Web automatically. However, the overlap information from different data sources will impair the quality of data integration. Thus, the goal of entity identification is to correctly identify all the instances of the same entity so as to eliminate the inconsistency of data sources during data integration. In this paper, we present a Three-phase Gradual Refining based Entity Identification Mechanism called TGR-EIM. Unlike traditional approaches, not only attribute features of instances but also semantic context and statistical constraints are analyzed to improve the accuracy of entity identification. Moreover, a self-Adaptive Knowledge Maintenance method (AKM) is proposed to maintain the completeness and validity of the instance relationship knowledge generated by TGR-EIM. Various experiments have demonstrated the feasibility and effectiveness of key techniques of TGR-EIM.
随着Web数据库的快速发展,需要对Web上的大规模数据进行自动集成。但是,来自不同数据源的重叠信息会影响数据集成的质量。因此,实体识别的目标是正确识别同一实体的所有实例,从而消除数据集成过程中数据源的不一致。本文提出了一种基于三阶段逐步细化的实体识别机制TGR-EIM。与传统方法不同,该方法不仅分析实例的属性特征,还分析语义上下文和统计约束,以提高实体识别的准确性。此外,提出了一种自适应知识维护方法(AKM)来维护TGR-EIM生成的实例关系知识的完整性和有效性。各种实验证明了TGR-EIM关键技术的可行性和有效性。
{"title":"Improving the accuracy of entity identification through refinement","authors":"Yue Kou","doi":"10.1145/1387150.1387157","DOIUrl":"https://doi.org/10.1145/1387150.1387157","url":null,"abstract":"With the rapid growth of Web Databases, it is necessary to integrate large-scale data available on Web automatically. However, the overlap information from different data sources will impair the quality of data integration. Thus, the goal of entity identification is to correctly identify all the instances of the same entity so as to eliminate the inconsistency of data sources during data integration. In this paper, we present a Three-phase Gradual Refining based Entity Identification Mechanism called TGR-EIM. Unlike traditional approaches, not only attribute features of instances but also semantic context and statistical constraints are analyzed to improve the accuracy of entity identification. Moreover, a self-Adaptive Knowledge Maintenance method (AKM) is proposed to maintain the completeness and validity of the instance relationship knowledge generated by TGR-EIM. Various experiments have demonstrated the feasibility and effectiveness of key techniques of TGR-EIM.","PeriodicalId":296308,"journal":{"name":"Proceedings of the 2008 EDBT Ph.D. workshop on - Ph.D. '08","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114286228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Proceedings of the 2008 EDBT Ph.D. workshop on - Ph.D. '08
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1