首页 > 最新文献

Proceedings of the 23rd international conference on Parallel architectures and compilation最新文献

英文 中文
Invyswell
I. Calciu, Justin Emile Gottschlich, Tatiana Shpeisman, Gilles Pokam, Maurice Herlihy
The Intel Haswell processor includes restricted transactional memory (RTM), which is the first commodity-based hardware transactional memory (HTM) to become publicly available. However, like other real HTMs, such as IBM's Blue Gene/Q, Haswell's RTM is best-effort, meaning it provides no transactional forward progress guarantees. Because of this, a software fallback system must be used in conjunction with Haswell's RTM to ensure transactional programs execute to completion. To complicate matters, Haswell does not provide escape actions. Without escape actions, non-transactional instructions cannot be executed within the context of a hardware transaction, thereby restricting the ways in which a software fallback can interact with the HTM. As such, the challenge of creating a scalable hybrid TM (HyTM) that uses Haswell's RTM and a software TM (STM) fallback is exacerbated. In this paper, we present Invyswell, a novel HyTM that exploits the benefits and manages the limitations of Haswell's RTM. After describing Invyswell's design, we show that it outperforms NOrec, a state-of-the-art STM, by 35%, Hybrid NOrec, NOrec's hybrid implementation, by 18%, and Haswell's hardware-only lock elision by 25% across all STAMP benchmarks.
{"title":"Invyswell","authors":"I. Calciu, Justin Emile Gottschlich, Tatiana Shpeisman, Gilles Pokam, Maurice Herlihy","doi":"10.1145/2628071.2628086","DOIUrl":"https://doi.org/10.1145/2628071.2628086","url":null,"abstract":"The Intel Haswell processor includes restricted transactional memory (RTM), which is the first commodity-based hardware transactional memory (HTM) to become publicly available. However, like other real HTMs, such as IBM's Blue Gene/Q, Haswell's RTM is best-effort, meaning it provides no transactional forward progress guarantees. Because of this, a software fallback system must be used in conjunction with Haswell's RTM to ensure transactional programs execute to completion. To complicate matters, Haswell does not provide escape actions. Without escape actions, non-transactional instructions cannot be executed within the context of a hardware transaction, thereby restricting the ways in which a software fallback can interact with the HTM. As such, the challenge of creating a scalable hybrid TM (HyTM) that uses Haswell's RTM and a software TM (STM) fallback is exacerbated. In this paper, we present Invyswell, a novel HyTM that exploits the benefits and manages the limitations of Haswell's RTM. After describing Invyswell's design, we show that it outperforms NOrec, a state-of-the-art STM, by 35%, Hybrid NOrec, NOrec's hybrid implementation, by 18%, and Haswell's hardware-only lock elision by 25% across all STAMP benchmarks.","PeriodicalId":297500,"journal":{"name":"Proceedings of the 23rd international conference on Parallel architectures and compilation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116657690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 56
OpenTuner
Jason Ansel, S. Kamil, K. Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, S. Amarasinghe
Program autotuning has been shown to achieve better or more portable performance in a number of domains. However, autotuners themselves are rarely portable between projects, for a number of reasons: using a domain-informed search space representation is critical to achieving good results; search spaces can be intractably large and require advanced machine learning techniques; and the landscape of search spaces can vary greatly between different problems, sometimes requiring domain specific search techniques to explore efficiently. This paper introduces OpenTuner, a new open source framework for building domain-specific multi-objective program autotuners. OpenTuner supports fully-customizable configuration representations, an extensible technique representation to allow for domain-specific techniques, and an easy to use interface for communicating with the program to be autotuned. A key capability inside OpenTuner is the use of ensembles of disparate search techniques simultaneously; techniques that perform well will dynamically be allocated a larger proportion of tests. We demonstrate the efficacy and generality of OpenTuner by building autotuners for 7 distinct projects and 16 total benchmarks, showing speedups over prior techniques of these projects of up to 2.8χ with little programmer effort.
{"title":"OpenTuner","authors":"Jason Ansel, S. Kamil, K. Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, S. Amarasinghe","doi":"10.1145/2628071.2628092","DOIUrl":"https://doi.org/10.1145/2628071.2628092","url":null,"abstract":"Program autotuning has been shown to achieve better or more portable performance in a number of domains. However, autotuners themselves are rarely portable between projects, for a number of reasons: using a domain-informed search space representation is critical to achieving good results; search spaces can be intractably large and require advanced machine learning techniques; and the landscape of search spaces can vary greatly between different problems, sometimes requiring domain specific search techniques to explore efficiently. This paper introduces OpenTuner, a new open source framework for building domain-specific multi-objective program autotuners. OpenTuner supports fully-customizable configuration representations, an extensible technique representation to allow for domain-specific techniques, and an easy to use interface for communicating with the program to be autotuned. A key capability inside OpenTuner is the use of ensembles of disparate search techniques simultaneously; techniques that perform well will dynamically be allocated a larger proportion of tests. We demonstrate the efficacy and generality of OpenTuner by building autotuners for 7 distinct projects and 16 total benchmarks, showing speedups over prior techniques of these projects of up to 2.8χ with little programmer effort.","PeriodicalId":297500,"journal":{"name":"Proceedings of the 23rd international conference on Parallel architectures and compilation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122028427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Proceedings of the 23rd international conference on Parallel architectures and compilation 第23届并行架构与编译国际会议论文集
{"title":"Proceedings of the 23rd international conference on Parallel architectures and compilation","authors":"","doi":"10.1145/2628071","DOIUrl":"https://doi.org/10.1145/2628071","url":null,"abstract":"","PeriodicalId":297500,"journal":{"name":"Proceedings of the 23rd international conference on Parallel architectures and compilation","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128537552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Proceedings of the 23rd international conference on Parallel architectures and compilation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1