首页 > 最新文献

Water-Wise Cities and Sustainable Water Systems: Concepts, Technologies, and Applications最新文献

英文 中文
Building resilience in water supply infrastructure in the face of future uncertainties: Insight from Cape Town 面对未来的不确定性,建设供水基础设施的弹性:来自开普敦的见解
Upeshika Heenetigala, L. Kapetas, R. Fenner
ions are perceived to also have a high resilience to flood events (Defra, 2015). 8.3.3.3 Option 3: wastewater reuse treatment plant Wastewater reuse provides a high degree of resilience to droughts and other extreme events due to the nature of the closed-loop system and should be considered as a baseline supply option as opposed to an additional source (Defra, 2015). However, similar to desalination, as the plant capacity is technically locked-in, it is unable to produce more water if demand increases beyond its capacity. 8.3.3.4 Option 4: surface water transfer scheme Surface water transfer schemes from river to reservoir are reliant upon rainfall and as the water resource is exposed, they have medium resilience to temperature extremes (Defra, 2015). However, reservoirs are able to store excess water when supply is plentiful, especially during high rainfall or flooding events, which can be utilised during low rainfall periods. This scheme has medium resilience to short term droughts but has low resilience for longer, multi-term droughts. 8.3.3.5 Summary of resilience characteristics analysis Table 8.2 summarises the results of the resilience assessment of the four options. The sum of the scores of the seven characteristics for each option show that wastewater reuse scores the highest, and hence can be deemed as the most resilient option. Figure 8.6 illustrates these results schematically. 8.3.4 Criteria 4 (C4): environmental impacts The environmental impacts of each of the options is assessed qualitatively in the following sections and scored subjectively based on low (1), moderate (2) and severe (3) negative impacts on the environment, relative to each other, and are summarised in Figure 8.7. 8.3.4.1 Option 1: desalination plant Plants between 100 000–200 000 m/day consume 3.5–4 kWh/m of energy (Zarzo & Prats, 2018), equating to 1.4–1.8 kg CO2 per cubic meter of produced water which makes the carbon footprint of large-scale desalination plants substantial (Elimelech & Phillip, 2011). This is particularly concerning since about 80% of South Africa’s primary energy needs are provided by coal, which is unlikely to change significantly in the next two decades (Energy RSA, 2018). Studies have shown that a major concern with SWRO desalination, as is being considered in Cape Town, is the effect that seawater intake will have on marine organisms – entrainment can kill a large number of fish and small planktonic organisms if open surface intakes are not implemented safely (Elimelech & Building resilience in water supply infrastructure in the face of future 217 Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/911929/9781789060768_0201.pdf by guest on 03 September 2021 Phillip, 2011). Furthermore, the increased salinity of SWRO brines, which is about twice that of seawater, and the chemicals used in the desalination process, also pose environmental risks to the marine ecosystem (Elimelech & Phillip, 2011). 8.3.4.2 Option 2: groundwater augmen
离子也被认为对洪水事件具有很高的弹性(Defra, 2015)。8.3.3.3方案3:废水回用处理厂由于闭环系统的性质,废水回用提供了对干旱和其他极端事件的高度弹性,应被视为基准供应选项,而不是额外的来源(Defra, 2015)。然而,与海水淡化类似,由于工厂的能力在技术上是锁定的,如果需求增加超过其能力,它就无法生产更多的水。8.3.3.4方案4:地表水调水方案从河流到水库的地表水调水方案依赖于降雨,由于水资源暴露,它们对极端温度具有中等的弹性(Defra, 2015)。然而,水库能够在供应充足时储存多余的水,特别是在高降雨或洪水事件期间,这些水可以在降雨少的时期使用。该方案对短期干旱具有中等恢复力,但对长期干旱的恢复力较低。8.3.3.5弹性特征分析总结表8.2总结了四个方案的弹性评估结果。每个方案的七个特征得分之和表明,废水回用得分最高,因此可以被认为是最具弹性的方案。图8.6以示意图的方式说明了这些结果。8.3.4准则4 (C4):环境影响每项方案的环境影响在以下各节中进行定性评估,并根据对环境的低(1)、中(2)及严重(3)负面影响进行主观评分,并在图8.7中总结。8.3.4.1选项1:海水淡化厂10万- 20万立方米/天的工厂消耗3.5-4千瓦时/米的能源(Zarzo & Prats, 2018),相当于每立方米产出水1.4-1.8千克二氧化碳,这使得大型海水淡化厂的碳足迹很大(Elimelech & Phillip, 2011)。这一点尤其令人担忧,因为南非约80%的初级能源需求是由煤炭提供的,这在未来20年内不太可能发生重大变化(energy RSA, 2018)。研究表明,开普敦正在考虑的SWRO海水淡化的一个主要问题是,是海水摄取对海洋生物的影响——如果不安全地实施露天取水,夹带可能会杀死大量鱼类和小型浮游生物(Elimelech &未来供水基础设施的建设弹性217下载自http://iwaponline.com/ebooks/book/chapter-pdf/911929/9781789060768_0201.pdf by guest于2021年9月3日Phillip, 2011)。此外,SWRO盐水的盐度增加,约为海水的两倍,以及海水淡化过程中使用的化学品,也对海洋生态系统构成了环境风险(Elimelech & Phillip, 2011)。8.3.4.2方案2:增加地下水方案增加地下水涉及若干环境问题,特别是可能对陆地生态系统、生物多样性和地下水位造成的影响。目前,似乎缺乏对开普敦地下水数据和监测的广泛了解,因此不知道下降对地下水位会产生什么影响(Parsons, 2018),特别是如果抽取的速度比补给的速度快(EEA, 2018)。此外,人们担心在桌山含水层等环境敏感地区钻孔会威胁到极度濒危物种的灭绝,使生态系统和湿地退化,并极大地改变集水区的水文,同时违反《国家环境管理法》的环境管理规定(Slingsby, 2018)。还有一些人担心大规模的抽象化会影响河流的流量(DWAF, 2007a)。8.3.4.3方案3:废水回用处理厂废水回用有几个好处,例如减少经处理的污水排放和工业排放到环境中的量,减少对地表水的依赖,从而增加通过系统的流量(Toze, 2006)。然而,有一些潜在的风险因素需要考虑。循环水的物理特性,如pH值、盐度、溶解氧和悬浮固体含量,对使用循环水的土壤环境有影响,特别是当循环水用于灌溉时(Toze, 2006)。此外,肠道病原体的存在,包括图8.7环境影响分析摘要。智慧水城市和可持续水系统218从http://iwaponline.com/ebooks/book/chapter-pdf/911929/9781789060768_0201下载。 再生水中的病毒、细菌、原生动物和蠕虫会污染与其接触的水体,并影响依赖它的生态系统(Toze, 2006年)。然而,这些风险可以通过充分处理废水以满足其用途的要求来减轻,无论是用于饮用还是用于灌溉等非饮用活动。8.3.4.4方案4:地表水调水方案从贝格河调水到Voëlvlei大坝有可能增加低河水流量,以减轻干旱期间大坝的损失(Defra, 2015)。但是,捐助国和受援国集水区之间的水平衡将发生不利变化,外来物种或疾病可能会转移(环境署,2006年)。这将影响接收水道的水质和生态以及依赖它的生态系统。8.3.5准则5 (C5):社会考虑消费者对到达家庭和营业地点的水的价格和质量的看法会影响对供水类型的最终决定。与其他方案相比,对废水回用的水源和水质的认识只有显著不同。废水再利用可以直接用于饮用水供应,但全球普遍认为存在反对它的推定,为了将其用于此目的,需要在公众的看法和接受程度上发生相当大的变化,以及监管方面的变化,这需要时间来制定(Defra, 2015)。将处理过的废水用于非饮用用途,如灌溉,争议较小,尽管目前全球实践的例子并不多,而且如前所述,它还必须经过充分处理以满足环境法规(Defra, 2015)。话虽如此,在本研究中,水的质量被忽略为一个次要标准。水的定价问题,特别是在南非的情况下,也很复杂。必须在需要处理和输送的水量与消费者能够负担或愿意支付的水量之间找到一个平衡。水价与所征收的关税水平直接相关,并与社会公平和获得水的问题有着更深刻的联系。水价因选择而异,因此是政策制定者的一个关键社会考虑因素。平均费率是通过将提供服务的总成本除以水的销售量来确定的(DWS, 2018),因此,每单位水的生产成本越高,费率就越高。开普敦的关税结构依赖于以较高价格出售大量水,以补贴较低价格的水(DWS, 2018)。如果水的价格增加,它可能会推动富裕家庭投资分散在供水基础设施建设弹性面对未来219年从http://iwaponline.com/ebooks/book/chapter-pdf/911929/9781789060768_0201.pdf下载客人于2021年9月03 Ta b le 8。3 S u m m ry o fo p tio n ch ra ct e ris io n再保险苏lt C ri te ri C 1: y ie ld(米3 / / / / / d y) C 2: C o S t ($ ///// 米3)C 3:再保险年代伊犁e n C e
{"title":"Building resilience in water supply infrastructure in the face of future uncertainties: Insight from Cape Town","authors":"Upeshika Heenetigala, L. Kapetas, R. Fenner","doi":"10.2166/9781789060768_0201","DOIUrl":"https://doi.org/10.2166/9781789060768_0201","url":null,"abstract":"ions are perceived to also have a high resilience to flood events (Defra, 2015). 8.3.3.3 Option 3: wastewater reuse treatment plant Wastewater reuse provides a high degree of resilience to droughts and other extreme events due to the nature of the closed-loop system and should be considered as a baseline supply option as opposed to an additional source (Defra, 2015). However, similar to desalination, as the plant capacity is technically locked-in, it is unable to produce more water if demand increases beyond its capacity. 8.3.3.4 Option 4: surface water transfer scheme Surface water transfer schemes from river to reservoir are reliant upon rainfall and as the water resource is exposed, they have medium resilience to temperature extremes (Defra, 2015). However, reservoirs are able to store excess water when supply is plentiful, especially during high rainfall or flooding events, which can be utilised during low rainfall periods. This scheme has medium resilience to short term droughts but has low resilience for longer, multi-term droughts. 8.3.3.5 Summary of resilience characteristics analysis Table 8.2 summarises the results of the resilience assessment of the four options. The sum of the scores of the seven characteristics for each option show that wastewater reuse scores the highest, and hence can be deemed as the most resilient option. Figure 8.6 illustrates these results schematically. 8.3.4 Criteria 4 (C4): environmental impacts The environmental impacts of each of the options is assessed qualitatively in the following sections and scored subjectively based on low (1), moderate (2) and severe (3) negative impacts on the environment, relative to each other, and are summarised in Figure 8.7. 8.3.4.1 Option 1: desalination plant Plants between 100 000–200 000 m/day consume 3.5–4 kWh/m of energy (Zarzo & Prats, 2018), equating to 1.4–1.8 kg CO2 per cubic meter of produced water which makes the carbon footprint of large-scale desalination plants substantial (Elimelech & Phillip, 2011). This is particularly concerning since about 80% of South Africa’s primary energy needs are provided by coal, which is unlikely to change significantly in the next two decades (Energy RSA, 2018). Studies have shown that a major concern with SWRO desalination, as is being considered in Cape Town, is the effect that seawater intake will have on marine organisms – entrainment can kill a large number of fish and small planktonic organisms if open surface intakes are not implemented safely (Elimelech & Building resilience in water supply infrastructure in the face of future 217 Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/911929/9781789060768_0201.pdf by guest on 03 September 2021 Phillip, 2011). Furthermore, the increased salinity of SWRO brines, which is about twice that of seawater, and the chemicals used in the desalination process, also pose environmental risks to the marine ecosystem (Elimelech & Phillip, 2011). 8.3.4.2 Option 2: groundwater augmen","PeriodicalId":304829,"journal":{"name":"Water-Wise Cities and Sustainable Water Systems: Concepts, Technologies, and Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125893955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Water-Wise Cities and Sustainable Water Systems: Concepts, Technologies, and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1