首页 > 最新文献

Computer science and data analysis series最新文献

英文 中文
Interactive graphics for Data Analysis - Principles and Examples 数据分析用交互式图形。原理和示例
Pub Date : 2008-10-24 DOI: 10.1201/b17187
M. Theus, Simon Urbanek
Interactive Graphics for Data Analysis: Principles and Examples discusses exploratory data analysis (EDA) and how interactive graphical methods can help gain insights as well as generate new questions and hypotheses from datasets.Fundamentals of Interactive Statistical Graphics The first part of the book summarizes principles and methodology, demonstrating how the different graphical representations of variables of a dataset are effectively used in an interactive setting. The authors introduce the most important plots and their interactive controls. They also examine various types of data, relations between variables, and plot ensembles.Case Studies Illustrate the Principles The second section focuses on nine case studies. Each case study describes the background, lists the main goals of the analysis and the variables in the dataset, shows what further numerical procedures can add to the graphical analysis, and summarizes important findings. Wherever applicable, the authors also provide the numerical analysis for datasets found in Cox and Snells landmark book.This full-color text shows that interactive graphical methods complement the traditional statistical toolbox to achieve more complete, easier to understand, and easier to interpret analyses.
数据分析的交互式图形:原理和例子讨论了探索性数据分析(EDA),以及交互式图形方法如何帮助从数据集中获得见解以及产生新的问题和假设。本书的第一部分总结了原理和方法,演示了如何在交互式设置中有效地使用数据集变量的不同图形表示。作者介绍了最重要的情节及其交互控制。他们还检查各种类型的数据,变量之间的关系,和情节集成。案例研究阐明原则第二部分着重于九个案例研究。每个案例研究都描述了背景,列出了分析的主要目标和数据集中的变量,显示了进一步的数值过程可以添加到图形分析中,并总结了重要的发现。在适用的情况下,作者还为Cox和Snells里程碑式的书中发现的数据集提供了数值分析。这全彩色文本表明,交互式图形方法补充了传统的统计工具箱,以实现更完整,更容易理解,更容易解释分析。
{"title":"Interactive graphics for Data Analysis - Principles and Examples","authors":"M. Theus, Simon Urbanek","doi":"10.1201/b17187","DOIUrl":"https://doi.org/10.1201/b17187","url":null,"abstract":"Interactive Graphics for Data Analysis: Principles and Examples discusses exploratory data analysis (EDA) and how interactive graphical methods can help gain insights as well as generate new questions and hypotheses from datasets.Fundamentals of Interactive Statistical Graphics The first part of the book summarizes principles and methodology, demonstrating how the different graphical representations of variables of a dataset are effectively used in an interactive setting. The authors introduce the most important plots and their interactive controls. They also examine various types of data, relations between variables, and plot ensembles.Case Studies Illustrate the Principles The second section focuses on nine case studies. Each case study describes the background, lists the main goals of the analysis and the variables in the dataset, shows what further numerical procedures can add to the graphical analysis, and summarizes important findings. Wherever applicable, the authors also provide the numerical analysis for datasets found in Cox and Snells landmark book.This full-color text shows that interactive graphical methods complement the traditional statistical toolbox to achieve more complete, easier to understand, and easier to interpret analyses.","PeriodicalId":311591,"journal":{"name":"Computer science and data analysis series","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115665765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 100
Clustering for data mining - a data recovery approach 数据挖掘的聚类——一种数据恢复方法
Pub Date : 2005-04-01 DOI: 10.1201/9781420034912
B. Mirkin
INTRODUCTION: HISTORICAL REMARKS WHAT IS CLUSTERING Exemplary Problems Bird's Eye View WHAT IS DATA Feature Characteristics Bivariate Analysis Feature Space and Data Scatter Preprocessing and Standardizing Mixed Data K-MEANS CLUSTERING Conventional K-Means Initialization of K-Means Intelligent K-Means Interpretation Aids Overall Assessment WARD HIERARCHICAL CLUSTERING Agglomeration: Ward Algorithm Divisive Clustering with Ward Criterion Conceptual Clustering Extensions of Ward Clustering Overall Assessment DATA RECOVERY MODELS Statistics Modeling as Data Recovery Data Recovery Model for K-Means Data Recovery Models for Ward Criterion Extensions to Other Data Types One-by-One Clustering Overall Assessment DIFFERENT CLUSTERING APPROACHES Extensions of K-Means Clustering Graph-Theoretic Approaches Conceptual Description of Clusters Overall Assessment GENERAL ISSUES Feature Selection and Extraction Data Pre-Processing and Standardization Similarity on Subsets and Partitions Dealing with Missing Data Validity and Reliability Overall Assessment CONCLUSION: Data Recovery Approach in Clustering BIBLIOGRAPHY Each chapter also contains a section of Base Words
简介:历史评论什么是聚类示范性问题鸟瞰图什么是数据特征特征双变量分析特征空间和数据散点预处理和标准化混合数据K-MEANS聚类传统K-MEANS初始化K-MEANS智能K-MEANS解释辅助整体评估分层聚类聚集Ward算法带Ward准则的分裂聚类Ward聚类总体评价数据恢复模型的扩展数据恢复统计建模作为数据恢复K-Means数据恢复模型Ward准则数据恢复模型扩展到其他数据类型逐一聚类总体评价不同聚类方法K-Means聚类的扩展图论方法聚类概念描述总体评价一般问题特征数据子集和分区的预处理与标准化相似性缺失数据的有效性和可靠性总体评估结论:聚类中的数据恢复方法参考书目每章还包含一节基础词
{"title":"Clustering for data mining - a data recovery approach","authors":"B. Mirkin","doi":"10.1201/9781420034912","DOIUrl":"https://doi.org/10.1201/9781420034912","url":null,"abstract":"INTRODUCTION: HISTORICAL REMARKS WHAT IS CLUSTERING Exemplary Problems Bird's Eye View WHAT IS DATA Feature Characteristics Bivariate Analysis Feature Space and Data Scatter Preprocessing and Standardizing Mixed Data K-MEANS CLUSTERING Conventional K-Means Initialization of K-Means Intelligent K-Means Interpretation Aids Overall Assessment WARD HIERARCHICAL CLUSTERING Agglomeration: Ward Algorithm Divisive Clustering with Ward Criterion Conceptual Clustering Extensions of Ward Clustering Overall Assessment DATA RECOVERY MODELS Statistics Modeling as Data Recovery Data Recovery Model for K-Means Data Recovery Models for Ward Criterion Extensions to Other Data Types One-by-One Clustering Overall Assessment DIFFERENT CLUSTERING APPROACHES Extensions of K-Means Clustering Graph-Theoretic Approaches Conceptual Description of Clusters Overall Assessment GENERAL ISSUES Feature Selection and Extraction Data Pre-Processing and Standardization Similarity on Subsets and Partitions Dealing with Missing Data Validity and Reliability Overall Assessment CONCLUSION: Data Recovery Approach in Clustering BIBLIOGRAPHY Each chapter also contains a section of Base Words","PeriodicalId":311591,"journal":{"name":"Computer science and data analysis series","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114245201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 460
Bayesian Artificial Intelligence 贝叶斯人工智能
Pub Date : 1900-01-01 DOI: 10.5860/choice.41-5948
K. Korb, A. Nicholson
Bayesian Reasoning. Introduction to Bayesian Networks. Inference in Bayesian Networks. Bayesian Network Applications. Bayesian Planning and Decision-Making. Bayesian Network Applications II. Learning Bayesian Networks I. Learning Bayesian Networks II. Causality vs. Probability. Knowledge Engineering with Bayesian Networks I. Knowledge Engineering with Bayesian Networks II. Application Software.
贝叶斯推理。贝叶斯网络简介。贝叶斯网络中的推理。贝叶斯网络应用。贝叶斯规划与决策。贝叶斯网络应用2。学习贝叶斯网络1 .学习贝叶斯网络2。因果关系vs概率。基于贝叶斯网络的知识工程1 .基于贝叶斯网络的知识工程2。应用程序软件。
{"title":"Bayesian Artificial Intelligence","authors":"K. Korb, A. Nicholson","doi":"10.5860/choice.41-5948","DOIUrl":"https://doi.org/10.5860/choice.41-5948","url":null,"abstract":"Bayesian Reasoning. Introduction to Bayesian Networks. Inference in Bayesian Networks. Bayesian Network Applications. Bayesian Planning and Decision-Making. Bayesian Network Applications II. Learning Bayesian Networks I. Learning Bayesian Networks II. Causality vs. Probability. Knowledge Engineering with Bayesian Networks I. Knowledge Engineering with Bayesian Networks II. Application Software.","PeriodicalId":311591,"journal":{"name":"Computer science and data analysis series","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131320094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 729
期刊
Computer science and data analysis series
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1