首页 > 最新文献

Diagnostics, Early Detection, and Imaging最新文献

英文 中文
Abstract PO-010: Detection of early tissue changes on historical CT scans in the regions of the pancreas gland that subsequently develop adenocarcinoma using quantitative textural analysis and fat fraction analysis PO-010:使用定量结构分析和脂肪分数分析检测胰腺腺癌早期组织变化的历史CT扫描
Pub Date : 2021-11-15 DOI: 10.1158/1538-7445.panca21-po-010
R. Korn, D. V. Von Hoff, Andre Burkett, Dominic Zygadlo, Taylor Brodie, K. Pañak, Sweta Rajan, D. Cridebring, M. Demeure
{"title":"Abstract PO-010: Detection of early tissue changes on historical CT scans in the regions of the pancreas gland that subsequently develop adenocarcinoma using quantitative textural analysis and fat fraction analysis","authors":"R. Korn, D. V. Von Hoff, Andre Burkett, Dominic Zygadlo, Taylor Brodie, K. Pañak, Sweta Rajan, D. Cridebring, M. Demeure","doi":"10.1158/1538-7445.panca21-po-010","DOIUrl":"https://doi.org/10.1158/1538-7445.panca21-po-010","url":null,"abstract":"","PeriodicalId":315716,"journal":{"name":"Diagnostics, Early Detection, and Imaging","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127858373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract PO-007: Plasma-based detection of pancreatic cancer: A multiomics approach 摘要PO-007:基于血浆的胰腺癌检测:一种多组学方法
Pub Date : 2021-11-15 DOI: 10.1158/1538-7445.panca21-po-007
Teng-Kuei Hsu, Tzu-Yu Liu, Billie A. Gould, Christine Decapite, A. Zureikat, A. Paniccia, E. Ariazi, Marvin Bertin, R. Bourgon, Kaitlyn E Coil, Hayley J. Donnella, Adam Drake, J. Granka, P. Kaur, M. Louie, Shivani Mahajan, A. Pasupathy, Ofer Shapira, Peter Ulz, Chun Yang, C. J. Lin, R. Brand
{"title":"Abstract PO-007: Plasma-based detection of pancreatic cancer: A multiomics approach","authors":"Teng-Kuei Hsu, Tzu-Yu Liu, Billie A. Gould, Christine Decapite, A. Zureikat, A. Paniccia, E. Ariazi, Marvin Bertin, R. Bourgon, Kaitlyn E Coil, Hayley J. Donnella, Adam Drake, J. Granka, P. Kaur, M. Louie, Shivani Mahajan, A. Pasupathy, Ofer Shapira, Peter Ulz, Chun Yang, C. J. Lin, R. Brand","doi":"10.1158/1538-7445.panca21-po-007","DOIUrl":"https://doi.org/10.1158/1538-7445.panca21-po-007","url":null,"abstract":"","PeriodicalId":315716,"journal":{"name":"Diagnostics, Early Detection, and Imaging","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126589429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Abstract PO-011: The spectrum of pathogenic germline variants in pancreatic cancer patients with multiple primary tumors PO-011:胰腺癌多发原发肿瘤患者的致病种系变异谱
Pub Date : 2021-11-15 DOI: 10.1158/1538-7445.panca21-po-011
Valentyna Kryklyva, L. Brosens, M. Ligtenberg, I. Nagtegaal
{"title":"Abstract PO-011: The spectrum of pathogenic germline variants in pancreatic cancer patients with multiple primary tumors","authors":"Valentyna Kryklyva, L. Brosens, M. Ligtenberg, I. Nagtegaal","doi":"10.1158/1538-7445.panca21-po-011","DOIUrl":"https://doi.org/10.1158/1538-7445.panca21-po-011","url":null,"abstract":"","PeriodicalId":315716,"journal":{"name":"Diagnostics, Early Detection, and Imaging","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131558525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract PO-013: Comparison of novel healthcare delivery models on the uptake of genetic education and testing in families with a history of pancreatic cancer: The GENetic Education, Risk Assessment and TEsting (GENERATE) study 摘要PO-013:胰腺癌家族史中新型医疗服务模式对遗传教育和检测的影响比较:遗传教育、风险评估和检测(GENERATE)研究
Pub Date : 2021-11-15 DOI: 10.1158/1538-7445.panca21-po-013
N. Rodriguez, C. S. Furniss, M. Yurgelun, Chinedu Ukaegbu, P. Constantinou, Alison Schwartz, J. Stopfer, Meghan Underhill-Blazey, Barbara J. Kenner, Scott H. Nelson, Sydney Okumura, S. Law, A. Zhou, Tara Coffin, H. Uno, A. Ocean, F. McAllister, A. Lowy, S. Lippman, A. Klein, L. Madlensky, G. Petersen, J. Garber, M. Goggins, A. Maitra, S. Syngal
{"title":"Abstract PO-013: Comparison of novel healthcare delivery models on the uptake of genetic education and testing in families with a history of pancreatic cancer: The GENetic Education, Risk Assessment and TEsting (GENERATE) study","authors":"N. Rodriguez, C. S. Furniss, M. Yurgelun, Chinedu Ukaegbu, P. Constantinou, Alison Schwartz, J. Stopfer, Meghan Underhill-Blazey, Barbara J. Kenner, Scott H. Nelson, Sydney Okumura, S. Law, A. Zhou, Tara Coffin, H. Uno, A. Ocean, F. McAllister, A. Lowy, S. Lippman, A. Klein, L. Madlensky, G. Petersen, J. Garber, M. Goggins, A. Maitra, S. Syngal","doi":"10.1158/1538-7445.panca21-po-013","DOIUrl":"https://doi.org/10.1158/1538-7445.panca21-po-013","url":null,"abstract":"","PeriodicalId":315716,"journal":{"name":"Diagnostics, Early Detection, and Imaging","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121392884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract PO-009: Multi-omic profiling of patient pancreatic cyst fluid for the identification of a novel biomarker panel of patient cancer risk 摘要PO-009:患者胰腺囊肿液的多组学分析用于鉴定患者癌症风险的新型生物标志物
Pub Date : 2021-11-15 DOI: 10.1158/1538-7445.panca21-po-009
Laura E. Kane, G. Mellotte, S. Marcone, B. Ryan, S. Maher
{"title":"Abstract PO-009: Multi-omic profiling of patient pancreatic cyst fluid for the identification of a novel biomarker panel of patient cancer risk","authors":"Laura E. Kane, G. Mellotte, S. Marcone, B. Ryan, S. Maher","doi":"10.1158/1538-7445.panca21-po-009","DOIUrl":"https://doi.org/10.1158/1538-7445.panca21-po-009","url":null,"abstract":"","PeriodicalId":315716,"journal":{"name":"Diagnostics, Early Detection, and Imaging","volume":"56 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114024155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract PO-008: Diagnostic accuracy of blood-based multi-omic biomarkers for pancreatic adenocarcinoma: A systematic review and meta-analysis PO-008:基于血液的多组学生物标志物对胰腺腺癌的诊断准确性:一项系统综述和荟萃分析
Pub Date : 2021-11-15 DOI: 10.1158/1538-7445.panca21-po-008
Laura E. Kane, G. Mellotte, E. Mylod, Rebecca M. O’Brien, F. O'Connell, Khanh Nguyen, C. E. Buckley, Jennifer Arlow, D. Mockler, A. Meade, B. Ryan, S. Maher
{"title":"Abstract PO-008: Diagnostic accuracy of blood-based multi-omic biomarkers for pancreatic adenocarcinoma: A systematic review and meta-analysis","authors":"Laura E. Kane, G. Mellotte, E. Mylod, Rebecca M. O’Brien, F. O'Connell, Khanh Nguyen, C. E. Buckley, Jennifer Arlow, D. Mockler, A. Meade, B. Ryan, S. Maher","doi":"10.1158/1538-7445.panca21-po-008","DOIUrl":"https://doi.org/10.1158/1538-7445.panca21-po-008","url":null,"abstract":"","PeriodicalId":315716,"journal":{"name":"Diagnostics, Early Detection, and Imaging","volume":"149 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133527301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract PO-012: The concept of artificial intelligence against pancreatic cancer 摘要PO-012:人工智能对抗胰腺癌的概念
Pub Date : 2021-11-15 DOI: 10.1158/1538-7445.panca21-po-012
S. Kumar
Pancreatic cancer (PC) remains the fourth leading cause of cancer-related death in both men and women in the United States. Despite considerable research efforts, pancreatic cancer is associated with a dire prognosis and a 5-year survival rate of only 10%. Early symptoms of the disease are mostly nonspecific. The premise of improved survival through early detection is that more individuals will benefit from potentially curative treatment. Pancreatic ductal adenocarcinoma (PDAC) is on track to become the number 2 cancer killer in the United States within the next decade unless there is a major improvement in outcomes. Surgical resection remains the only reasonable hope for a cure from PDAC. The potential for early detection of asymptomatic pancreatic neoplasms in high-risk individuals using an endoscopic approach, but this approach is operator dependent and at the same time, these existing techniques are favored once patients reach the age of 75 years. Artificial intelligence (AI) methodology has emerged as a successful tool for risk stratification and identification in general health care. Machine learning refers to the study of algorithms that learn their behavior from data. To see why such algorithms are important, consider the following basic task, building a program to predict if an image contains a dog or a cat. Although it is exceedingly difficult for us to manually specify the exact rules to determine that a dog is a dog, it is comparatively straightforward to prepare a reference set of images and labels. This setting, where knowledge is more easily encoded in data rather than as a descriptive set of rules, is the focus of ML algorithms. One of the most promising areas of innovation in medical imaging in the past decade has been the application of deep learning. Deep learning has the potential to impact the entire medical imaging workflow from image acquisition, image registration, to interpretation. Traditional image processing is dominated by algorithms that are based on statistical models. These statistical model-based processing algorithms carry out inference based on a complete knowledge of the underlying statistical model relating the observations at hand and the desired information and do not require data to learn their mapping. In practice, accurate knowledge of the statistical model relating the observations and the desired information is typically unavailable. The past decade has witnessed a deep learning revolution. Deep learning methods have surpassed the state of the art for many problems in signal processing, imaging, and vision with unprecedented performance gains. Citation Format: Subash Kumar. The concept of artificial intelligence against pancreatic cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Pancreatic Cancer; 2021 Sep 29-30. Philadelphia (PA): AACR; Cancer Res 2021;81(22 Suppl):Abstract nr PO-012.
胰腺癌(PC)仍然是美国男性和女性癌症相关死亡的第四大原因。尽管进行了大量的研究,但胰腺癌的预后很差,5年生存率只有10%。这种疾病的早期症状大多是非特异性的。通过早期发现提高生存率的前提是更多的个体将从潜在的治愈治疗中受益。胰腺导管腺癌(PDAC)有望在未来十年内成为美国第二大癌症杀手,除非治疗结果有重大改善。手术切除仍然是治愈PDAC的唯一合理希望。在高危人群中使用内镜方法早期发现无症状胰腺肿瘤的潜力,但这种方法依赖于操作人员,同时,一旦患者达到75岁,这些现有技术就会受到青睐。人工智能(AI)方法已成为一般卫生保健中风险分层和识别的成功工具。机器学习是指研究从数据中学习行为的算法。要了解为什么这种算法很重要,请考虑以下基本任务,构建一个程序来预测图像中是否包含狗或猫。虽然我们很难手动指定确定狗是狗的确切规则,但准备一组参考图像和标签相对简单。在这种情况下,知识更容易被编码到数据中,而不是作为一组描述性规则,这是ML算法的重点。在过去十年中,医学成像领域最有前途的创新领域之一是深度学习的应用。深度学习有可能影响从图像采集、图像配准到解释的整个医学成像工作流程。传统的图像处理主要是基于统计模型的算法。这些基于统计模型的处理算法根据与手头观测和所需信息相关的底层统计模型的完整知识进行推理,并且不需要数据来学习它们的映射。在实践中,通常无法获得与观测结果和所需信息相关的统计模型的准确知识。过去十年见证了一场深度学习革命。深度学习方法在信号处理、成像和视觉领域的许多问题上都超越了目前的技术水平,具有前所未有的性能提升。引文格式:Subash Kumar。人工智能对抗胰腺癌的概念[摘要]。摘自:AACR胰腺癌虚拟特别会议论文集;2021年9月29-30日。费城(PA): AACR;癌症杂志,2021;81(22增刊):摘要nr PO-012。
{"title":"Abstract PO-012: The concept of artificial intelligence against pancreatic cancer","authors":"S. Kumar","doi":"10.1158/1538-7445.panca21-po-012","DOIUrl":"https://doi.org/10.1158/1538-7445.panca21-po-012","url":null,"abstract":"Pancreatic cancer (PC) remains the fourth leading cause of cancer-related death in both men and women in the United States. Despite considerable research efforts, pancreatic cancer is associated with a dire prognosis and a 5-year survival rate of only 10%. Early symptoms of the disease are mostly nonspecific. The premise of improved survival through early detection is that more individuals will benefit from potentially curative treatment. Pancreatic ductal adenocarcinoma (PDAC) is on track to become the number 2 cancer killer in the United States within the next decade unless there is a major improvement in outcomes. Surgical resection remains the only reasonable hope for a cure from PDAC. The potential for early detection of asymptomatic pancreatic neoplasms in high-risk individuals using an endoscopic approach, but this approach is operator dependent and at the same time, these existing techniques are favored once patients reach the age of 75 years. Artificial intelligence (AI) methodology has emerged as a successful tool for risk stratification and identification in general health care. Machine learning refers to the study of algorithms that learn their behavior from data. To see why such algorithms are important, consider the following basic task, building a program to predict if an image contains a dog or a cat. Although it is exceedingly difficult for us to manually specify the exact rules to determine that a dog is a dog, it is comparatively straightforward to prepare a reference set of images and labels. This setting, where knowledge is more easily encoded in data rather than as a descriptive set of rules, is the focus of ML algorithms. One of the most promising areas of innovation in medical imaging in the past decade has been the application of deep learning. Deep learning has the potential to impact the entire medical imaging workflow from image acquisition, image registration, to interpretation. Traditional image processing is dominated by algorithms that are based on statistical models. These statistical model-based processing algorithms carry out inference based on a complete knowledge of the underlying statistical model relating the observations at hand and the desired information and do not require data to learn their mapping. In practice, accurate knowledge of the statistical model relating the observations and the desired information is typically unavailable. The past decade has witnessed a deep learning revolution. Deep learning methods have surpassed the state of the art for many problems in signal processing, imaging, and vision with unprecedented performance gains. Citation Format: Subash Kumar. The concept of artificial intelligence against pancreatic cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Pancreatic Cancer; 2021 Sep 29-30. Philadelphia (PA): AACR; Cancer Res 2021;81(22 Suppl):Abstract nr PO-012.","PeriodicalId":315716,"journal":{"name":"Diagnostics, Early Detection, and Imaging","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125640667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Diagnostics, Early Detection, and Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1